EI、Scopus 收录
中文核心期刊

颗粒缺陷相互作用下复合材料的细观损伤模型

付云伟, 倪新华, 刘协权, 张龙, 文波

付云伟, 倪新华, 刘协权, 张龙, 文波. 颗粒缺陷相互作用下复合材料的细观损伤模型[J]. 力学学报, 2016, 48(6): 1334-1342. DOI: 10.6052/0459-1879-16-152
引用本文: 付云伟, 倪新华, 刘协权, 张龙, 文波. 颗粒缺陷相互作用下复合材料的细观损伤模型[J]. 力学学报, 2016, 48(6): 1334-1342. DOI: 10.6052/0459-1879-16-152
Fu Yunwei, Ni Xinhua, Liu Xiequan, Zhang Long, Wen Bo. MICRO-DAMAGE MODEL OF COMPOSITE MATERIALS WITH PARTICLE AND DEFECT INTERACTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1334-1342. DOI: 10.6052/0459-1879-16-152
Citation: Fu Yunwei, Ni Xinhua, Liu Xiequan, Zhang Long, Wen Bo. MICRO-DAMAGE MODEL OF COMPOSITE MATERIALS WITH PARTICLE AND DEFECT INTERACTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1334-1342. DOI: 10.6052/0459-1879-16-152
付云伟, 倪新华, 刘协权, 张龙, 文波. 颗粒缺陷相互作用下复合材料的细观损伤模型[J]. 力学学报, 2016, 48(6): 1334-1342. CSTR: 32045.14.0459-1879-16-152
引用本文: 付云伟, 倪新华, 刘协权, 张龙, 文波. 颗粒缺陷相互作用下复合材料的细观损伤模型[J]. 力学学报, 2016, 48(6): 1334-1342. CSTR: 32045.14.0459-1879-16-152
Fu Yunwei, Ni Xinhua, Liu Xiequan, Zhang Long, Wen Bo. MICRO-DAMAGE MODEL OF COMPOSITE MATERIALS WITH PARTICLE AND DEFECT INTERACTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1334-1342. CSTR: 32045.14.0459-1879-16-152
Citation: Fu Yunwei, Ni Xinhua, Liu Xiequan, Zhang Long, Wen Bo. MICRO-DAMAGE MODEL OF COMPOSITE MATERIALS WITH PARTICLE AND DEFECT INTERACTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1334-1342. CSTR: 32045.14.0459-1879-16-152

颗粒缺陷相互作用下复合材料的细观损伤模型

基金项目: 国家自然科学基金资助项目(11272355).
详细信息
    通讯作者:

    倪新华,教授,主要研究方向:复合材料损伤与断裂.E-mail:jxxynxh@163.com

  • 中图分类号: O346

MICRO-DAMAGE MODEL OF COMPOSITE MATERIALS WITH PARTICLE AND DEFECT INTERACTION

  • 摘要: 含尖角的非椭球颗粒附近应力集中较大,诱导缺陷形成裂纹是材料损伤的重要来源.对于强界面颗粒,大刚度颗粒诱导裂纹向基体中扩展形成近似平面片状裂纹,认为诱导裂纹受颗粒应力附近应力场控制,基于有效自洽理论建立了材料细观损伤模型,得到了单向拉伸下的损伤演化,并分析了颗粒形状、尺寸、颗粒性能以及颗粒与初始缺陷相对位置等因素对材料损伤的影响.结果表明,非椭球颗粒更易诱发裂纹,同样外载应力下,损伤程度更大,含非椭球颗粒材料强度更低;含扁平型的颗粒材料裂纹损伤过程更加明显并且材料强度更大;提高颗粒刚度和含量能够增大材料强度.材料中存在尺寸过大或过小的初始裂纹时材料损伤过程不明显.
    Abstract: Stress concentration is much bigger around the sharp angle of the non-ellipsoidal particle than around the ellipsoidal particle, and the cracks beside the particles caused by the stress are the primary damage of composite ceramics. Particle caused crack usually extends to the composite matrix to form the penny crack when the particle is stiffer than the matrix and the interface is strong. Considering the crack propagation was controlled by the stress around the particle, the meso-damage mechanical model is obtained based on the effective self-consistent theory, to describe the damage evolution of the composite ceramic under simple tension. The influences of particle shape, sizeand stiffness, and the distance between the crack and the particle on the composite damage are analyzed. The result indicated that the nonellipsoidal particle is more easily to cause crack propagating than the similar ellipsoidal particle, and the damage degree is much higher in the composite with non-ellipsoidal particle than with non-ellipsoidal particle under the same loading. Composite strength with non-ellipsoidal particle is smaller than that with ellipsoidal particle. Stable damage process is more obvious in composite with flat particle and the strength is much higher. Increasing the particle stiffness and the particle volume fraction can improve the composite strength. The stable damage is unobvious in composite when the primary defect size is too large or too small.
  • 1 Eshelby JD. The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc Royal Soc A, 1957, 241:376-396
    2 Mori T, Tanaka K. Average stress in matrix and average energy of materials with misfitting inclusion. Act Metal, 1973, 21:571-574
    3 Mallick K, Cronin J, Arzberger S. Effect of inclusion morphology on the coefficient of thermal expansion of a filled polymer matrix. AIAA 2006-2098, 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Con, Rhode Island, 2006
    4 粱军, 杜善义, 许兴利等. 含缺陷纤维增强复合材料热膨胀系数预报. 哈尔滨工业大学学报, 1997, 29(3):36-38(Liang Jun, Du Shanyi, Xu Xingli, et al. Thermal expansion coefficients of fiber composite materials containing matrix microcracks. Journal of Harbin Institute of Technology,1997, 29(3):36-38(in Chinese))
    5 Teng H. Stiffness properties of particulate composites containing debonded particles. Int J Solids Struct, 2010, 47:2191-2200
    6 付云伟, 刘协权, 倪新华等. 含固有缺陷复合材料有效弹性性能预报. 机械工程学报, 2012, 48(6):46-51(Fu Yunwei, Liu Xiequan, Ni Xinhua, et al. Effective elastic property prediction of ceramic composite with inherent defect. J Mech Engng, 2012, 48(6):46-51(in Chinese))
    7 Sridhar N, Rickman JM, Srolovitz DJ. Effect of reinforcement morphology on matrix microcracking. Acta Mater, 1996, 44(3):915-925
    8 Mura T. Micromechanics of Defects in Solids. 2nd edn. Dordrecht:Martinus NijhoffPublishers, 1987
    9 郭荣鑫, Lormand G, 李俊昌. 夹杂物问题应力场的数值计算. 昆明理工大学学报(理工版), 2004, 29(3):51-55(Guo Rongxin, Lormand G, Li Junchang. Numerical Calculation of the Stress field for the inclusion problem. Journal of Kunming University of Science and Technology (Science and Technology), 2004, 29(3):51-55(in Chinese))
    10 Lee HK, Pyo SH. Multi-level modeling of effective elastic behavior and progressive weakened interface in particulate composites. Composites Science and Technology, 2008, 68:387-397
    11 Qu J. Eshelby tensor for an elastic inclusion with slightly weakened interfaces. Journal of Applied Mechanics, 1993, 60(4):1048-1050
    12 Bian LC,Wang Q. Influence of the particle size and volume fraction on micro-damage of the composites. Arch Appl Mech, 2012, 83:445-454
    13 Wilkinson DS, Pompe W, Oeschner M. Modeling the mechanical behaviour of heterogeneous multi-phase materials. Prog Mech Sci, 2001, (46):379-405
    14 Shodja HM. Shokrolahi-Zadeh B. Ellipsoidal domains:piecewise nonuniform and impotent eigenstrain fields. J Elasticity, 2007, 86:1-18
    15 Bonfoh N, Hounkpati V, Sabar H. New micromechanical approach of the coated inclusion problem:Exact solution and applications. Comp Mat Sci, 2012, 62:175-183
    16 Jasiuk I, Tsuchida E, Mura T. The sliding inclusion under shear. Int. J. Solids Struct, 1987, 23(10):1373-1385
    17 Mura T, Jasiuk I, Tsuchida B. The stress field of a sliding inclusion. Int J Solids Struct, 1985, 21(12):1165-1179
    18 Xu BX, Mueller R, Wang MZ. The Eshelby property of sliding inclusions. Arch Appl Mech, 2011, 81:19-35
    19 Sauer R, Wang AG, Li S. The composite Eshelby tensors and their applications to homogenization. Acta Mech, 2008, 197:63-96
    20 Kang H, Milton GW. Solutions to the Pólya-Szegö conjecture and the weak Eshelby conjecture. Arch Ration Mech An, 2008, 188(1):93-116
    21 Liu LP. Solutions to the Eshelby conjectures. P Ro Soc Edinb A, 2008, 464:573-594
    22 Zou WN. Limitation of average Eshelby tensor and its application in analysis of ellipse approximation. Acta Mech Solida Sinica, 2001, 24(2):176-184
    23 Han AL, Gan BS, Setiawan Y. The influence of single inclusions to the crack initiation, propagation and compression strength of mortar. Procedia Engineering, 2014, 95:376-385
    24 Williams JJ, Segurado J, LLorca J, et al. Three dimensional (3D) microstructure-based modeling of interfacial decohesion in particle reinforced metal matrix composites. Materials Science & Engineering A, 2012, 557:113-118
    25 郝圣旺, 孙菊. 非均质脆性材料灾变破坏的一种敏感前兆. 力学学报, 2008, 40(3):339-344(Hao Shengwang, Sun Ju. A sensitive precursor to catastrophic failure in heterogeneous brittle materials. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(3):339-344(in Chinese))
    26 Tan H, Huang Y, Liu C, et al. The uniaxial tension of particulate composite materials with nonlinear interface debonding. Int J Solids Struct, 2007, 44:1809-1822
    27 Ju JW, Lee HK. A micromechanical damage model for effective elastoplastic behavior of partially debonded ductile matrix composites. Int J Solids Struct, 2001, 38:6307-6332
    28 Chen JK,Wang GT, Yu ZZ, et al. Critical particle size for interfacial debonding in polymer/nanoparticle composites. Composites Science and Technology, 2010, 70:861-872
    29 付云伟, 张龙, 倪新华等. 考虑夹杂相互作用的复合陶瓷夹杂界面的断裂分析. 力学学报, 2016, 48(1):154-162(Fu Yunwei, Zhang Long, Ni Xinhua, et al. Interface cracking analysis with inclusions interaction in composite ceramic. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1):154-162(in Chinese))
    30 Meng QH, Wang ZQ. Prediction of interfacial strength and failure mechanisms in particle-reinforced metal-matrix composites based on a micromechanical model. Engineering Fracture Mechanics, 2015, 142(1):170-183
    31 McNamara D, Alveen P, Carolan D, et al. Numerical analysis of the strength of polycrystalline diamond as a function of microstructure. International Journal of Refractory Metals and Hard Materials, 2015, 52(1):195-202
    32 Rodin GJ. Eshelby's inclusion problem for polygons and polyhedra. J Mech Phys Solids, 1996, 44(12):1977-1995
    33 Chen QD, Xu K, Pan YE. Inclusion of an arbitrary polygon with graded eigenstrain in an anisotropic piezoelectric half plane. J Mech Phys Solids, 2014, 51(2):53-62
    34 Lee YG, Zou WN, Ren HH. Eshelby's problem of inclusion with arbitrary shape in an isotropic elastic half-plane. J Mech Phys Solids, 2016, 81(1):399-410
    35 Liu MQ, Gao XL. Strain gradient solution for the Eshelby-type polygonal inclusion problem. J Mech Phys Solids, 2013, 50(2):328-338
    36 Huang NC, Korobeinik MY. Interfacial debonding of a spherical inclusion embedded in an infinite medium under remote stress. International Journal of Fracture, 2001, 107:11-30
    37 Sridhar N, Rickman J, Srolovitz M. Effect of reinforcement morphology on matrix microcracking. Acta Mater, 1996, 44(3):915-925
    38 Ju JW, Lee HK. A micromechanical damage model for effective elastoplasttic behavior of partially debonded ductile matrix composites. Int J Solids Struct, 2001, 38:6307-6332
    39 Zhou R, Li Z, Sun J. Crack deffection and interface debonding in composite materials elucidated by the configuration force theory. Composites:Part B, 2011, 42:1999-2003
    40 Knight MG, Wrobel JL, Henshall JL, et al. A study of the interaction between a propagating crack and an uncoated/coated elastic inclusion using the BE technique. International Journal of Fracture, 2002, 114:47-61
    41 Zheng QS, Du DX. An explicit and universally applicable estimate for the effective properties of multiphase composites which accounts for inclusion distribution. J Mech Phys Solids, 2001, 49(11):2765-2788
    42 Nozaki H, Taya M. Elastic fields in a polygon-shaped inclusion with uniform eigenstrains. ASME J Appl Mech, 1997, 64, 495-502
    43 Xu BX,Wang MZ. Special properties of Eshelby tensor for a regular polygonal inclusion. Acta Mech Sinica, 2005, 21(3):267-271
    44 Huang MJ, Wu P, Guan GY, et al. Explicit expressions of the Eshelby tensor for an arbitrary 3D weakly non-spherical inclusion. Acta Mech, 2011, 217(1-2):17-38
  • 期刊类型引用(7)

    1. 何君雄,叶伟. 含椭球夹杂体的异质结构全空间弹性场. 重庆大学学报. 2022(12): 82-93 . 百度学术
    2. 赵伯宇,胡伟平,孟庆春. 考虑晶体滑移面分解正应力的细观损伤模型. 力学学报. 2021(05): 1355-1366 . 本站查看
    3. 曾祥太,吕爱钟. 含有非圆形双孔的无限平板中应力的解析解研究. 力学学报. 2019(01): 170-181 . 本站查看
    4. 袁建梁,刘泽鹏,闫志峰,张红霞. 超声表面机械研磨处理对6061铝合金FSW接头疲劳行为的影响. 焊接. 2019(07): 34-39+67 . 百度学术
    5. 王增会,李锡夔. 基于介观力学信息的颗粒材料损伤-愈合与塑性宏观表征. 力学学报. 2018(02): 284-296 . 本站查看
    6. 侯淑娟,梁慧妍,汪全中,韩旭. 基于迭代法的非线性弹性均质化研究. 力学学报. 2018(04): 837-846 . 本站查看
    7. 李乐. 开裂孔隙材料渗透率的细观力学模型研究. 力学学报. 2018(05): 1032-1040 . 本站查看

    其他类型引用(2)

计量
  • 文章访问数:  1020
  • HTML全文浏览量:  121
  • PDF下载量:  874
  • 被引次数: 9
出版历程
  • 收稿日期:  2016-06-01
  • 修回日期:  2016-08-02
  • 刊出日期:  2016-11-17

目录

    /

    返回文章
    返回