EI、Scopus 收录
中文核心期刊

几何构型对流动聚焦生成微液滴的影响

刘赵淼, 杨洋

刘赵淼, 杨洋. 几何构型对流动聚焦生成微液滴的影响[J]. 力学学报, 2016, 48(4): 867-876. DOI: 10.6052/0459-1879-16-063
引用本文: 刘赵淼, 杨洋. 几何构型对流动聚焦生成微液滴的影响[J]. 力学学报, 2016, 48(4): 867-876. DOI: 10.6052/0459-1879-16-063
Liu Zhaomiao, Yang Yang. INFLUENCE OF GEOMETRY CONFIGURATIONS ON THE MICRODROPLETS IN FLOWFOCUSING MICROFLUIDICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 867-876. DOI: 10.6052/0459-1879-16-063
Citation: Liu Zhaomiao, Yang Yang. INFLUENCE OF GEOMETRY CONFIGURATIONS ON THE MICRODROPLETS IN FLOWFOCUSING MICROFLUIDICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 867-876. DOI: 10.6052/0459-1879-16-063
刘赵淼, 杨洋. 几何构型对流动聚焦生成微液滴的影响[J]. 力学学报, 2016, 48(4): 867-876. CSTR: 32045.14.0459-1879-16-063
引用本文: 刘赵淼, 杨洋. 几何构型对流动聚焦生成微液滴的影响[J]. 力学学报, 2016, 48(4): 867-876. CSTR: 32045.14.0459-1879-16-063
Liu Zhaomiao, Yang Yang. INFLUENCE OF GEOMETRY CONFIGURATIONS ON THE MICRODROPLETS IN FLOWFOCUSING MICROFLUIDICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 867-876. CSTR: 32045.14.0459-1879-16-063
Citation: Liu Zhaomiao, Yang Yang. INFLUENCE OF GEOMETRY CONFIGURATIONS ON THE MICRODROPLETS IN FLOWFOCUSING MICROFLUIDICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 867-876. CSTR: 32045.14.0459-1879-16-063

几何构型对流动聚焦生成微液滴的影响

基金项目: 国家自然科学基金资助项目(11572013).
详细信息
    通讯作者:

    刘赵淼,教授,主要研究方向:微流体力学、计算流体力学、流固耦合分析.E-mail:lzm@bjut.edu.cn

  • 中图分类号: O35

INFLUENCE OF GEOMETRY CONFIGURATIONS ON THE MICRODROPLETS IN FLOWFOCUSING MICROFLUIDICS

  • 摘要: 流动聚焦型微流控装置能够方便、高效地生成均一度好且大小精确可调的微液滴(气泡),故被广泛应用于颗粒材料合成、药物封装、细胞培养等诸多领域. 进一步优化通道结构有助于实现对合成微粒粒径、均一度和尺寸范围的精确调控. 本文数值研究了通道深度、缩颈段长度以及两相夹角等几何构型因素对流动聚焦生成微液滴直径及其生成周期各个阶段的影响. 控制液滴生成方式为滴流式,发现液滴直径随通道深度d 的增加近似呈线性增大,且当通道深度小于30 μm 时,随着通道深度的下降,微液滴生成周期在毛细力的强烈作用下出现骤升,通道深度超过80 μm 时,微液滴的生成周期基本接近恒定. 连续相和离散相的夹角θ接近90°时,液滴直径及其生成周期最短,夹角太大或太小均不利于生成均一度好且粒径微小可控的液滴. 调整缩颈段长度l引起液滴直径及其生成周期的变化幅度仅为其平均值的3%~5% 左右. 此外,缩颈段宽度也是影响流动聚焦生成微液滴直径及其生成周期的重要因素,在通道深度固定时,缩颈段越宽,微液滴直径及其生成周期越大.
    Abstract: Micro flow-focusing devices were widely used in the synthesis of particulate material, drug packaging, cell culture and other areas owing to the convenience and effectiveness to produce highly monodisperse and precisely sizecontrollable droplets. To optimize the channel structure and geometry parameters deeply is of benefit to achieve the precise regulation of droplets' diameter, uniformity and the size ranges. For the adaptive design, channel depth, orifice length and the angle in continuous and discrete phase are taken into account to investigate the influence of geometry configurations on the microdroplet diameter and its generated cycle stages in flow focusing microchannel by making use of numerical simulation. It is shown that the droplet diameter approximately increases linearly with the channel depth, meanwhile, when the channel depth is less than 30 μm, the droplet's cycle increases suddenly under the application of strong capillary force. The microdroplet diameter and its cycle are both the shortest while the angle of the continuous phase and discrete phase θ is nearly 90°, and too large or too small angles are both not conductive to generate droplets with uniform diameter and well controlled particle size. Orifice length is used to adjust the alteration of the microdroplet diameter and its cycle, which lead to the average rangeability within 3%~5%. In addition, the width of orifice region is an important factor a ecting the microdroplet diameter and its cycle in cross microchannel. When the channel depth is fixed, the wider the orifice region is, the greater the microdroplet diameter and its cycle are.
  • 1 Hao G, Duits MHG, Frieder M. Droplets formation and merging in two-phase flow microfluidics. International Journal of Molecular Sciences, 2011, 12(4): 2572-2597
    2 司廷,尹协振. 流动聚焦研究进展及其应用. 科学通报, 2011, 56(8): 537-546 (Si Ting, Yin Xiezhen. Progress and application of flow focusing. Chinese Science Bulletin, 2011, 56(8): 537-546 (in Chinese))
    3 Barrero A, Loscertales IG. Micro-and nanoparticles via capillary flows. Annual Review of Fluid Mechanics, 2006, 39(1): 89-106
    4 GaÑ AM. Generation of steady liquid microthreads and micronsized monodisperse sprays in gas streams. Physical Review Letters, 1998, 80(2): 285-288
    5 Gañán AM. A novel pneumatic technique to generate steady capillary microjets. Journal of Aerosol Science, 1999, 30(1): 117-125
    6 Gañán-Calvo M, Gordillo JM. Perfectly monodisperse microbubbling by capillary flow focusing. Physical Review Letters, 2001, 87(27 Pt 1): 455-475
    7 李战华,吴健康,胡国庆等. 微流控芯片中的流体流动. 北京: 科学出版社,2012 (Li Zhanhua, Wu Jiankang, Hu Guoqing, et al. Fluid Flow in Microfluidic Chips. Beijing: Science Press, 2012 (in Chinese))
    8 陈晓东,胡国庆. 微流控器件中的多相流动. 力学进展, 2015, 45: 201503 (Chen Xiaodong, Hu Guoqing. Multiphase flow in microfluidic devices. Advances in Mechanics, 2015, 45: 201503 (in Chinese))
    9 Yow HN. Formation of liquid core-polymer shell microcapsules. Soft Matter, 2006, 2(2): 940-949
    10 Esserkahn AP, Odom SA, Sottos NR, et al. Triggered release from polymer capsules. Macromolecules, 2011, 44(14): 5539-5553
    11 Nakashima T, Shimizu M, Kukizaki M. Particle control of emulsion by membrane emulsification and its applications. Advance Drug Delivery Review, 2000, 45(1): 47-56
    12 Atencia J, Beebe DJ. Controlled microfluidic interfaces. Nature, 2005, 437(7059): 648-655
    13 Joanicot M, Ajdari A. Droplet control for microfluidics. Science, 2005, 309(5736): 887-888
    14 Sahoo HR, Kralj JG, Jensen KF. Multistep continuous-flow microchemical synthesis involving multiple reactions and separations. Angewandte Chemie International Edition, 2007, 46: 5704-5708
    15 Seemann R, Brinkmann M, Pfohl T, et al. Droplet based microfluidics. Reports on Progress in Physics, 2012, 75(1): 016601-016601
    16 Teh SY, Lin R, Hung LH, et al. Droplet microfluidics. Lab on A Chip, 2008, 8(2): 198-220
    17 Belder D. Microfluidics with droplets. Angewandte Chemie International Edition, 2005, 44(23): 3521-3522
    18 Chu L, Utada A, Shah R, et al. Controllable monodisperse multiple emulsions. Angewandte Chemie, 2007, 119: 9128-9132
    19 林炳承,秦建华. 微流控芯片分析化学实验室. 高等学校化学学报, 2009, 30(3): 433-445 (Lin Bingcheng, Qin Jianhua. Microfluidic analytical chemistry laboratory. Chemical Journal of Chinese Universities, 2009, 30(3): 433-445(in Chinese))
    20 Martín-Banderas L, Flores-Mosquera M, Riesco-Chueca P, et al. Flow focusing: A versatile technology to produce size-controlled and specific-morphology microparticles. Small, 2005, 1(7): 688-692
    21 Martín-Banderas L, Rodríguez-Gil A, Cebolla Á, et al. Towards high-throughput production of uniformly encoded microparticles. Advance Materials, 2006, 18(5): 559-564
    22 Holgado MA, Arias JL, Cózar MJ, et al. Synthesis of lidocaineloaded PLGA microparticales by flow focusing: effects on drug loading and release properties. International Journal of Pharmaceutics, 2008, 358(1-2): 27-35
    23 Gañán-Calvo AM, Martín-Banderas L, González-Prieto R, et al. Straightforward production of encoded microbeads by flow focusing: Potential applications for biomolecule detection. International Journal of Pharmaceutics, 2006, 324(1): 19-26
    24 Karnik R, Gu F, Basto P, et al. Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Letters, 2008, 8(??): 2906-2912
    25 Zhang S, Yun J, Shen S, et al. Formation of solid lipid nanoparticles in a microchannel system with a cross-shaped junction. Chemical Engineering Science, 2008, 63(23): 5600-5605
    26 刘赵淼,刘丽昆,申峰. Y 型微通道中两相界面特性变化分析. 机械工程学报,2014, 50(8): 189-196 (Liu Zhaomiao, Liu Likun, Shen Feng. Numerical analysis on two-phase flow characteristics at convection microfluidic Y-junctions. Journal of Mechanical Engineering, 2014, 50(8): 189-196 (in Chinese))
    27 刘赵淼,刘丽昆,申峰. Y 型微通道两相流内部流动特性. 力学学报, 2014, 46(2): 209-216 (Liu Zhaomiao, Liu Likun, Shen Feng. Two-phase flow characteristics in Y-junction microchannel. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(2): 209-216 (in Chinese))
    28 Tan YC, Cristini V, Lee AP. Monodispersed microfluidic droplet generation by shear focusing microfluidic device. Sensors & Actuator B Chemical, 2006, 114(1): 350-356
    29 刘赵淼,刘佳,申峰. 不同重力下90° 弯管内气液两相流流型及流动特性研究. 力学学报,2015, 47(2): 223-230 (Liu Zhaomiao, Liu Jia, Shen Feng. Simulation on flow patterns and characteristics of two-phase gas-liquid flow in a 90° bend under different gravity. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2): 223-230 (in Chinese))
    30 Fu T, Wu Y, Ma Y, et al. Droplet formation and breakup dynamics in microfluidic flow-focusing devices: From dripping to jetting. Chemical Engineering Science, 2012, 84(52): 207-217
    31 董立春,吴纪周,任桂香等. T 型微流控通道中微液滴形成机制的CFD 模拟. 重庆大学学报,2011, 34(1): 134-139 (Dong Lichun, Wu Jizhou, Ren Guixiang, et al. CFD simulation of droplet formulation in a microfluidic T-junction. Journal of Chongqing University, 2011, 34(1): 134-139 (in Chinese))
    32 王维萌,马一萍,陈斌. 十字交叉微通道内液滴生成过程的数值模拟. 化工学报,2015 (5): 1633-1641 (Wang Weimeng, Ma Yipping, Chen Bin. Numerical simulation of droplet generation in crossing micro-channel. CIESC Journal, 2015 (5): 1633-1641 (in Chinese))
    33 Wu P, Luo ZF, Liu ZF, et al. Drag-induced breakup mechanism for droplet generation in dripping within flow focusing microfluidics. Chinese Journal of Chemical Engineering, 2014: 23(1): 7-14
    34 吴平. 液滴微流控的实验应用和理论研究. [博士论文]. 安徽: 中国科学技术大学,2014 (Wu Ping. Experiments and theories of droplet-based microfluidics. [PhD Thesis]. Anhui: University of Science and Technology of China, 2014 (in Chinese))
    35 De Menech M, Garstecki P, Jousse F, et al. Transition from squeezing to dripping in a microfluidic T-shaped junction. Journal of Fluid Mechanics, 2008, 595(3): 141-161
    36 Glawdel T, Elbuken C, Ren CL. Droplet formation in microfluidic T-junction generators operating in the transitional regime. I. Experimental observations. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2012, 85(1-2): 377-402
    37 Glawdel T, Elbuken C, Ren CL. Droplet Formation in microfluidic T-junction generators operating in the transitional regime. II. Modeling. Physical Review E, 2012, 85: 016323
    38 Chen X, Glawdel T, Cui N, et al. Model of droplet generation in flow focusing generators operating in the squeezing regime. Microfluidics & Nanofluidics, 2014, 18(5-6): 1341-1353
  • 期刊类型引用(12)

    1. 张甜梦,蔡雄辉. 微流控制备聚甲基丙烯酸甲酯微球. 高分子材料科学与工程. 2024(12): 19-25 . 百度学术
    2. 梁定新,薛春东,曾效,覃开蓉. 流动聚焦微通道中滴流模式下非牛顿液滴生成的实验研究. 实验流体力学. 2023(02): 36-45 . 百度学术
    3. 张帅,王博,马泽遥,陈晓东. 关键构型参数对流动聚焦式微流控液滴生成的影响. 力学学报. 2023(06): 1257-1266 . 本站查看
    4. 康宇,胡晓玮,来星辰. 聚焦型微通道内气泡生成特性数值模拟. 液压与气动. 2022(08): 171-177 . 百度学术
    5. 郑杰,王洪,闫延鹏,崔建国. 微流控芯片液滴生成与检测技术研究进展. 应用化学. 2021(01): 1-10 . 百度学术
    6. 韩博,李芬,贾月梅,连小洁,田海平. 流动聚焦法制备丝素蛋白微球. 生物技术. 2021(03): 300-305 . 百度学术
    7. 梁广洋,郭钟宁,谢凯武,邓宇. 流道结构和两相流速对微液滴制备的影响. 机电工程技术. 2021(07): 119-123 . 百度学术
    8. 穆恺,司廷. 毛细流动聚焦的实验方法及过程控制. 实验流体力学. 2020(02): 46-56 . 百度学术
    9. 徐刚,梁帅,刘武发,郑鹏. 流动聚焦型微流控芯片微通道结构优化. 郑州大学学报(工学版). 2020(04): 87-91 . 百度学术
    10. 韩宇,刘志军,王云峰,罗尧,刘凤霞,王晓娟,魏炜,许晓飞. T型微通道反应器内气液两相流动机制及影响因素. 力学学报. 2019(02): 441-449 . 本站查看
    11. 刘赵淼,王文凯,逄燕. 扩展腔对方波型微混合器混合性能的影响研究. 力学学报. 2018(02): 254-262 . 本站查看
    12. 甘云华,江政纬,李海鸽. 锥射流模式下乙醇静电喷雾液滴速度特性分析. 力学学报. 2017(06): 1272-1279 . 本站查看

    其他类型引用(23)

计量
  • 文章访问数:  1211
  • HTML全文浏览量:  149
  • PDF下载量:  660
  • 被引次数: 35
出版历程
  • 收稿日期:  2016-03-01
  • 修回日期:  2016-04-28
  • 刊出日期:  2016-07-17

目录

    /

    返回文章
    返回