EI、Scopus 收录
中文核心期刊

颗粒材料剪切流动状态转变的环剪试验研究

季顺迎, 孙珊珊, 陈晓东

季顺迎, 孙珊珊, 陈晓东. 颗粒材料剪切流动状态转变的环剪试验研究[J]. 力学学报, 2016, 48(5): 1061-1072. DOI: 10.6052/0459-1879-16-049
引用本文: 季顺迎, 孙珊珊, 陈晓东. 颗粒材料剪切流动状态转变的环剪试验研究[J]. 力学学报, 2016, 48(5): 1061-1072. DOI: 10.6052/0459-1879-16-049
Ji Shunying, Sun Shanshan, Chen Xiaodong. SHEAR CELL TEST ON TRANSITION OF SHEAR FLOWSTATES OF GRANULAR MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1061-1072. DOI: 10.6052/0459-1879-16-049
Citation: Ji Shunying, Sun Shanshan, Chen Xiaodong. SHEAR CELL TEST ON TRANSITION OF SHEAR FLOWSTATES OF GRANULAR MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1061-1072. DOI: 10.6052/0459-1879-16-049
季顺迎, 孙珊珊, 陈晓东. 颗粒材料剪切流动状态转变的环剪试验研究[J]. 力学学报, 2016, 48(5): 1061-1072. CSTR: 32045.14.0459-1879-16-049
引用本文: 季顺迎, 孙珊珊, 陈晓东. 颗粒材料剪切流动状态转变的环剪试验研究[J]. 力学学报, 2016, 48(5): 1061-1072. CSTR: 32045.14.0459-1879-16-049
Ji Shunying, Sun Shanshan, Chen Xiaodong. SHEAR CELL TEST ON TRANSITION OF SHEAR FLOWSTATES OF GRANULAR MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1061-1072. CSTR: 32045.14.0459-1879-16-049
Citation: Ji Shunying, Sun Shanshan, Chen Xiaodong. SHEAR CELL TEST ON TRANSITION OF SHEAR FLOWSTATES OF GRANULAR MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1061-1072. CSTR: 32045.14.0459-1879-16-049

颗粒材料剪切流动状态转变的环剪试验研究

基金项目: 国家自然科学基金(U1234209,11572067)和国家重点基础研究发展计划(2010CB731502)资助项目.
详细信息
    通讯作者:

    季顺迎,教授,主要研究方向:颗粒材料力学及工程应用.E-mail:jisy@dlut.edu.cn

  • 中图分类号: O347.7;O373

SHEAR CELL TEST ON TRANSITION OF SHEAR FLOWSTATES OF GRANULAR MATERIALS

  • 摘要: 颗粒材料的剪切流动行为广泛地存在于滑坡、泥石流等自然灾害以及矿物原料传输、泵送等工业过程中.颗粒材料在不同体积分数、剪切速率和应力约束下会表现出不同的流动状态并发生相互转化.对颗粒材料在剪切流动过程中力学特性的研究有助于加深理解其发生不同流动状态的内在机理,为解决相应的颗粒材料问题提供理论依据.为此,本文研制了颗粒材料剪切流动的中型环剪仪,并对颗粒材料在不同法向约束应力和剪切速率下的剪切应力和体积膨胀率进行了测试.结果表明,剪切应力和体积膨胀率均随剪切速率的增大而增大,但增长速率在临界剪切速率处发生转变,使其随剪切速率的平方呈分段式线性增长.通过对颗粒材料在不同剪切速率和惯性数下有效摩擦系数变化趋势的分析,讨论了颗粒材料由慢速流向快速流转化的基本规律,以及在临界剪切速率处发生流动状态转化的内在条件.此外,通过对不同法向应力下临界剪切速率以及快速流动下运动规律的测试,发现临界剪切速率随法向应力的增加而减小,即法向应力可促进颗粒材料由慢速流向快速流的转化,但在快速流动状态下的有效摩擦系数对法向应力不敏感.以上对颗粒材料在不同剪切速率、法向应力下流动状态的环剪试验研究有助于揭示其发生不同流动状态转化的内在机理.
    Abstract: The shear flow behaviors of granular materials exist widely in the natural disasters (such as landslide and debris flow) and the industrial process (such as transportation and pumping of mineralmaterials). Granular materials perform various shear flow states under different volume fractions, shear rates and constraint stresses. The investigation of mechanical characteristics in a shear flow process provides an insight to the mechanism of phase transition of granular materials. In this study, a medium-size annular shear cell was developed to study the shear flow states of granular materials and their transition. The shear stress and the volume dilation rate were measured under various normal stresses and shear rates. The experimental results show that the shear stress and the volume dilation rate increase with increasing shear rate. Both of them increase with the square of shear rate piecewise linearly. The inflection points in the linear relations of the square of shear rate versus the shear stress and the volume dilation rate were obtained at the critical shear rate respectively. With the analysis of effective friction coefficis under various shear rates and inertia numbers, the phase transition process between the slow flow and the rapid flow was discussed. The phase transition occurs at the critical shear rate. Moreover, the shear flow states of granular materials were measured under various normal stresses. The critical shear rate decreases with increasing normal stress. This indicates that the normal stress can boost the phase transition between the slow flow state and the rapid flow state. In rapid shear flow state, the effective friction coefficient is independent of the normal stress. The mechanism of phase transition can be well studied with the experiments of shearing granular under various shear rates and normal stresses.
  • 1 王光谦, 熊刚, 方红卫. 颗粒流动的一般本构关系. 中国科学(E辑), 28(3):282-288(Wang Guangqian, Xiong Gang, Fang Hongwei. The normal constitutive law of granular. Science in China (Series E), 28(3):282-288(in Chinese))
    2 吴清松, 胡茂彬. 颗粒流的动力学模型和实验研究进展. 力学进展, 2002, 32(2):250-258(Wu Qingsong, Hu Maobin. Advances on dynamic modeling and experimental studies for granular flow. Advances in Mechanics, 2002, 32(2):250-258(in Chinese))
    3 Wang X, Zhu HP, Luding S, et al. Regime transitions of granular flow in a shear cell:A micromechanical study. Physical Review E, 2013, 88:032203
    4 Forterre Y, Pouliquen O. Flows of dense granular media. Annual Review of Fluid Mechanics, 2008, 40:1-24
    5 厚美瑛, 陈唯, 张彤等. 颗粒物质从稀疏流到密集流转变的普适规律. 物理, 2004, 33(7):473-476(Hou Meiying, Chen Wei, Zhang Tong, et al. Global property of the dilute-to-dense transition of granular flows in a 2D channel. Physics, 2004, 33(7):473-476(in Chinese))
    6 钟杰, 彭政, 吴耀宇等. 二维颗粒流从稀疏态到密集态的临界转变. 物理学报, 2006, 55(12):6691-6696(Zhong Jie, Peng Zheng, Wu Yaoyu, et al. The critical phenomena of the dilute-to-dense transition in two-dimensional granular flow. Acta Physica Sinica, 2006, 55(12):6691-6696(in Chinese))
    7 Hu MB, Liu QY, Jiang R, et al. Phase transition and flow-rate behavior of merging granular lows. Physical Review E, 2015, 91:022206
    8 Babic M, Shen HH, Shen HT. The stress tensor in granular shear flows of uniform, deformable disks at high solids concentrations. Journal of Fluid Mechanics, 1990, 219:81-118
    9 Campbell CS. Granular shear flows at the elastic limit. Journal of Fluid Mechanics, 2002, 465:261-291
    10 季顺迎, Shen HH. 颗粒介质在类固液相变过程中的时空参数特性. 科学通报, 2006, 51(3):255-262(Ji Shunying, Shen H Hayley. Characteristics of temporal-spatial parameters in quasi-solidfluid phase transition of granular materials. Chinese Science Bulletin, 2006, 51(3):255-262(in Chinese))
    11 季顺迎. 非均匀颗粒介质的类固液相变行为及其本构方程. 力学学报, 2007, 39(2):223-237(Ji Shunying. The quasi-solid-liquid phase transition of non-uniform granular materials and their constitutive equation. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(2):223-237(in Chinese))
    12 Campbell CS. Granular material flows-an overview. Powder Technology, 2006, 162:208-229
    13 Utter B, Behringer RP. Experimental measures of affine and nonaffine deformation in granular shear. Physical Review Letters, 2008, 100:208302
    14 Chaudhuri P, Berthier L, Kob W. Universal nature of particle displacements close to glass and jamming transitions. Physical Review Letters, 2007, 99:060604
    15 Ashwin SS, Yamchi MZ, Bowles RK. Inherent structure landscape connection between liquids, granular materials, and the jamming phase diagram. Physical Review Letters, 2013, 110:145701
    16 Liu AJ, Nagel SR. Jamming is not just cool any more. Nature, 1998, 396:21
    17 Zhang Z, Xu N, Chen DTN, et al. Thermal vestige of the zerotemperature jamming transition. Nature, 2009, 459:230-233
    18 季顺迎, 孙其诚, 严颖. 颗粒物质剪切流动的类固-液转化特性及相变图的建立. 中国科学:物理学力学天文学, 2011, 41(9):1112-1125(Ji Shunying, Sun Qicheng, Yan Ying. Characteristics in quasi-solid-liquid phase transition of granular shear flow and its phase diagram. Scientia Sinica-Phys, Mech & Astron, 2011, 41(9):1112-1125(in Chinese))
    19 Nemat-Nasser S, Zhang J. Constitutive relations for cohesionless frictional granular materials. International Journal of Plasticity, 2002, 18:531-547
    20 Lois G, Lemaitre A, Carlson J. Numerical tests of constitutive laws for dense granular flows. Physical Review E, 2005, 72:051303
    21 孙其诚, 王光谦. 颗粒流动力学及其离散模型评述. 力学进展, 2008, 38(1):87-100(Sun Qicheng, Wang Guangqian. Review on granular flow dynamics and its discrete element method. Advances in Mechanics, 2008, 38(1):87-100(in Chinese))
    22 张国华, 孙其诚, 黄芳芳等. 摩擦颗粒体系各向同性压缩过程中的堵塞行为. 物理学报, 2011, 60(12):124502(Zhang Guohua, Sun Qicheng, Huang Fangfang et al. Jamming phenomena of a two-dimensional frictional granular system under isotropic confining. Acta Physica Sinica, 2011, 60(12):124502(in Chinese))
    23 Jop P, Forterre Y, Pouliquen O. A constitutive law for dense granular flows. Nature, 2006, 441(8):727-730
    24 MiDi GDR. On dense granular flows. The European Physical Journal E, 2004, 14:341-365
    25 da Cruz F, Emam S, Prochnow M, et al. Rheophysics of dense granular materials:discrete simulation of plane shear flows. Physical Review E, 2005, 72, 021309
    26 Jop P, Forterre Y, Pouliquen O. Crucial role of sidewalls in granular surface flows:consequences for the rheology. Journal of Fluid Mechanics, 2005, 541:167-192
    27 Baker JL, Barker T, Gray JMNT. A two-dimensional depth-averaged (I)-rheology for dense granular avalanches. Journal of Fluid Mechanics, 2016, 787:367-395
    28 Savage SB, Sayed M. Stresses developed by dry cohesionless granular materials sheared in an annular shear cell. Journal of Fluid Mechanics, 1984, 142:391-430
    29 Pouliquen O, Cassar C, Jop P, et al. Flow of dense granular material:towards simple constitutive laws. Journal of Statistical Mechanicstheory and Experiment, 2006, P07020
    30 Tardos GI, Khan MI, Schae er DG. Forces on a slowly rotating, rough cylinder in a Couette device containing a dry, frictional powder. Physics of Fluids, 1998, 10(2):335-341
    31 Hanes DM, Inman DL. Observations of rapidly flowing granularfluid materials. Journal of Fluid Mechanics, 1985, 150:357-380
    32 Miller B, O'Hern C, Behringer RP. Stress fluctuations for continuously sheared granular materials. Physical Review Letters, 1996, 77(15):3110-3113
    33 Wildman RD, Martin TW, Huntley JM, et al. Experimental investigation and kinetic-theory-based model of a rapid granular shear flow. Journal of Fluid Mechanics, 2008, 602:63-79
    34 Jalali P, Ritvanen J, Sarkomaa P. Transient and steady state behaviors of rapid granular shear flows. Experiments in Fluids, 2005, 39:552-561
    35 Bagnold RA. Experiments on a gravity free dispersion of large solid spheres in a Newtonian fluid under shear. Proc Roy Soc London A, 1954, 225:49-63
    36 Orlando AD, Shen HH. Effect of particle size and boundary conditions on the shear stress in an annular shear cell. Granular Matter, 2012, 14(3):423-431
    37 Koval G, Roux JN, Corfdir A, et al. Annular shear of cohesionless granular materials:From the inertial to quasistatic regime. Physical Review E, 2009, 79:021306
    38 Liao CC, Hsiau SS, Chang PS. Bottom wall friction coefficis on the dynamic properties of sheared granular flows. Powder Technology, 2015, 270:348-357
    39 Alenzi A, Marinack M, Higgs CF, et al. DEM validation using an annular shear cell. Powder Technology, 2013, 248:131-142
    40 Ji S, Hanes DM, Shen HH. Comparisons of physical experiment and discrete element simulations of sheared granular materials in an annular shear cell. Mechanics of Materials, 2008, 41:764-776
    41 McCarthy JJ, Jasti V, Marinack M, et al. Quantitative validation of the discrete element method using an annular shear cell. Powder Technology, 2010, 203:70-77
    42 Lu K, Brodsky EE, Kavehpour HP. A thermodynamic unification of jamming. Nature Physics, 2008, 4:404-407
    43 杨有莲, 朱俊高, 余挺等. 土与结构接触面力学特性环剪试验研究. 岩土力学, 2009, 30(11):3256-3260(Yang Youlian, Zhu Jungao, Yu Ting, et al. Experimental study of mechanical behaviour of soil-structureinterface by ring shear test. Rock and Soil Mechanics, 2009, 30(11):3256-3260(in Chinese))
    44 张明,胡瑞林,殷跃平等. 滑坡型泥石流转化机制环剪试验研究. 岩石力学与工程学报, 2010, 29(4):822-832(Zhang Ming, Hu Ruilin, Yin Yueping, et al. Study of transform mechanism of landslide-debris flow with ring shear test. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(4):822-832(in Chinese))
    45 Hsiau SS, Yang WL. Stresses and transport phenomena in sheared granular flowswith different wall conditions. Physics of Fluids, 2002, 14(2):612-621
    46 Qin H. Flow behavior of granular materials:quasi-static to inertial transition.[Master Thesis]. Florida:University of Florida, 2000
    47 Liu CH, Nagel SR, Schecter DA, et al. Force fluctuations in bead packs. Science, 1995, 269:513-515
    48 Hsiau SS, Shieh YM. Fluctuations and self-diffusion of sheared granular material flows. Journal of Rheology, 2002, 43(5):1049-1066
    49 Castillo G, Mujica N, Soto R. Fluctuations and criticality of a granular solid-liquid-like phase transition. Physical Review Letters, 2012, 109:095701
    50 Howell DW, Behringer RP, Veje CT. Stress fluctuations in a 2D granular Couette experiment:a continuous transition. Physical Review Letters, 1999, 26:5241-5244
    51 Hunt ML, Zenit R, Campbell CS, et al. Revisiting the 1954 suspension experiments of R. A. Bagnold. Journal of Fluid Mechanics, 2002, 452:1-24
    52 Jaeger HM, Nagel SR. Physics of the granular state. Science, 1992, 255:1523-1531
    53 Wang D, Zhou Y. Particle dynamics in dense shear granular flow. Acta Mechanica Sinica, 2010, 26:91-100
    54 Keys AS, Abate AR, Glotzer SC, et al. Measurement of growing dynamical length scales and prediction of the jamming transition in a granular material. Nature Physics, 2007, 3:260-264
    55 Jaeger HM, Nagel SR, Behringer RP. Granular solids, liquids, and gases. Reviews of Modern Physics, 1996, 68:1259-1273
    56 Renouf M, Bonamy D, Dubois F, et al. Numerical simulation of two-dimensional steady granular flows in rotating drum:on surface flow rheology. Physics of Fluids, 2005, 17:103303
    57 Baran O, Ertas D, Halsey TC, et al. Velocity correlations in dense gravity-driven granular chute flow. Physical Review E, 2006, 74:051302
    58 Yan Y, Ji S. Energy conservation in a granular shear flow and its quasi-solid-liquid transition. Particulate Science and Technology, 2009, 27(2):126-138
  • 期刊类型引用(13)

    1. 陈琼,崔德山,张扬景皓,朱俊峰. 一种新型环剪仪的研制及其应用. 地质科技通报. 2025(01): 205-215 . 百度学术
    2. 张先盼,唐朝波,杨建广,刘将,朱强,黄天曦,叶文龙. 剪切强化苯胺与软锰矿浸出工艺研究. 矿冶工程. 2024(06): 125-128 . 百度学术
    3. 朱强,杨建广,周远林,汪文超,南天翔,唐朝波,曾伟志. 剪切强化针铁矿沉铁过程晶体生长规律研究. 过程工程学报. 2022(02): 186-194 . 百度学术
    4. 梅江洲,马刚,邹宇雄,王頔,周伟,常晓林. 颗粒断层泥黏滑运动的研究进展. 中国科学:技术科学. 2022(07): 984-998 . 百度学术
    5. 许志洋,孟凡净,丁昊昊. 表面摩擦因数对颗粒螺旋输送动力学特性的影响. 机床与液压. 2022(14): 136-140 . 百度学术
    6. 刘静香,孟凡净,董娜. 输运物料参数对螺旋输送机输运影响的力学机制. 河南工学院学报. 2022(05): 5-9 . 百度学术
    7. 孟凡净,刘华博,花少震. 颗粒间摩擦对颗粒流润滑影响的力学机制. 工程力学. 2021(04): 221-229+246 . 百度学术
    8. 谭援强,肖湘武,张江涛,姜胜强. 尼龙粉末在SLS预热温度下的离散元模型参数确定及其流动特性分析. 力学学报. 2019(01): 56-63 . 本站查看
    9. 张耀文,吴迪. 黏性土的残余强度及试验方法研究. 工程技术研究. 2019(24): 147-148+226 . 百度学术
    10. 孟凡净,刘焜,吴华伟. 颗粒流润滑剪切膨胀的力学机制研究. 工程力学. 2018(08): 236-244 . 百度学术
    11. 修晨曦,楚锡华. 基于微形态模型的颗粒材料中波的频散现象研究. 力学学报. 2018(02): 315-328 . 本站查看
    12. 王嗣强,季顺迎. 考虑等效曲率的超二次曲面单元非线性接触模型. 力学学报. 2018(05): 1081-1092 . 本站查看
    13. 宋朝阳,宁方波. 弱胶结类岩石细观结构参数与其宏观力学行为的关联性研究进展. 金属矿山. 2018(12): 1-9 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数:  1346
  • HTML全文浏览量:  184
  • PDF下载量:  668
  • 被引次数: 19
出版历程
  • 收稿日期:  2016-02-21
  • 修回日期:  2016-06-15
  • 刊出日期:  2016-09-17

目录

    /

    返回文章
    返回