EI、Scopus 收录
中文核心期刊

页岩黏土孔隙含水饱和度分布及其对甲烷吸附的影

李靖, 李相方, 王香增, 辛一男, 韩俊峰, 石军太, 孙政, 王蕊

李靖, 李相方, 王香增, 辛一男, 韩俊峰, 石军太, 孙政, 王蕊. 页岩黏土孔隙含水饱和度分布及其对甲烷吸附的影[J]. 力学学报, 2016, 48(5): 1217-1228. DOI: 10.6052/0459-1879-15-452
引用本文: 李靖, 李相方, 王香增, 辛一男, 韩俊峰, 石军太, 孙政, 王蕊. 页岩黏土孔隙含水饱和度分布及其对甲烷吸附的影[J]. 力学学报, 2016, 48(5): 1217-1228. DOI: 10.6052/0459-1879-15-452
Li Jing, Li Xiangfang, Wang Xiangzeng, Xin Yinan, Han Junfeng, Shi Juntai, Sun Zheng, Wang Rui. EFFECT OF WATER DISTRIBUTION ON METHANE ADSORPTION CAPACITY IN SHALE CLAY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1217-1228. DOI: 10.6052/0459-1879-15-452
Citation: Li Jing, Li Xiangfang, Wang Xiangzeng, Xin Yinan, Han Junfeng, Shi Juntai, Sun Zheng, Wang Rui. EFFECT OF WATER DISTRIBUTION ON METHANE ADSORPTION CAPACITY IN SHALE CLAY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1217-1228. DOI: 10.6052/0459-1879-15-452
李靖, 李相方, 王香增, 辛一男, 韩俊峰, 石军太, 孙政, 王蕊. 页岩黏土孔隙含水饱和度分布及其对甲烷吸附的影[J]. 力学学报, 2016, 48(5): 1217-1228. CSTR: 32045.14.0459-1879-15-452
引用本文: 李靖, 李相方, 王香增, 辛一男, 韩俊峰, 石军太, 孙政, 王蕊. 页岩黏土孔隙含水饱和度分布及其对甲烷吸附的影[J]. 力学学报, 2016, 48(5): 1217-1228. CSTR: 32045.14.0459-1879-15-452
Li Jing, Li Xiangfang, Wang Xiangzeng, Xin Yinan, Han Junfeng, Shi Juntai, Sun Zheng, Wang Rui. EFFECT OF WATER DISTRIBUTION ON METHANE ADSORPTION CAPACITY IN SHALE CLAY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1217-1228. CSTR: 32045.14.0459-1879-15-452
Citation: Li Jing, Li Xiangfang, Wang Xiangzeng, Xin Yinan, Han Junfeng, Shi Juntai, Sun Zheng, Wang Rui. EFFECT OF WATER DISTRIBUTION ON METHANE ADSORPTION CAPACITY IN SHALE CLAY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1217-1228. CSTR: 32045.14.0459-1879-15-452

页岩黏土孔隙含水饱和度分布及其对甲烷吸附的影

基金项目: 国家重大自然基金(51490654)和国家科技重大专项(2016ZX05039,2016ZX05042)资助项目.
详细信息
    通讯作者:

    李靖,在读博士研究生,主要研究方向:非常规油气田开发.E-mail:lijingsuc@163.com

    李相方,教授,博士生导师,主要研究方向:油气田开发理论及系统工程.E-mail:lixf2013@vip.163.com

  • 中图分类号: TE37

EFFECT OF WATER DISTRIBUTION ON METHANE ADSORPTION CAPACITY IN SHALE CLAY

  • 摘要: 考虑储层原始含水特征,甲烷在页岩的吸附特征属于气液固三相复杂作用结果,水分在很大程度上影响页岩吸附能力,将成为制约页岩气资源量评估可靠性的主要原因之一.鉴于页岩水分主要分布于黏土等无机矿物孔隙内部,分析了甲烷-水膜-页岩黏土三相作用特征,结果表明:甲烷在干燥黏土表面吸附满足气固界面Langmuir吸附特征,在黏土水膜表面吸附满足气液界面Gibbs吸附特征,在气液固三相作用下满足“气固”与“气液”界面混合吸附特征;同时研究还发现:不同尺度孔隙内含水饱和度分布特征存在差异,部分小孔隙可以被水分充满,而大孔隙仅吸附一定厚度水膜.因此,水分对甲烷吸附能力的影响主要表现为两个方面:小孔隙被水分阻塞而失去吸附能力;大孔隙表面水膜改变甲烷吸附特征(气固界面吸附转变为气液界面吸附),以黏土样品为例,两者综合效应可以致使甲烷吸附能力降低约90%.从微观角度揭示了水分对页岩吸附能力的影响机理,将为建立合理评价页岩吸附气含量的方法奠定理论基础.
    Abstract: Methane adsorption in shale is the result of gas-liquid-solid interaction when considering water saturation in actual condition. And the moisture (water saturation) which significantly influences methane adsorption capacity will likely make shale gas resources misestimated. In this paper, we analyze the interaction characteristics between methane, water film and clay base on adsorption theory, and results reveal that:(1) methane adsorption on clay (dry) could be described by gas-solid interface Langmuir adsorption equation; (2) methane adsorption on water film could be described by gas-liquid interface Gibbs adsorption equation; (3) gas-liquid-solid interaction could be described by ‘gas-solid’ and ‘gas-liquid’ integrated equation. Meanwhile, we find that water saturation distribution is significantly effected by pore size, and micropores could be filled with water in certain condition while macropore only bound by water film. Therefore, the influence of moisture on methane adsorption is mainly for two aspects:(1) micropores which blocked by water are invalid for methane adsorption; (2) macropores bounded by water film change the interaction characteristics for methane adsorption (from gas-solid interaction to the gas-liquid interaction), and the overall effect could decrease the adsorption capacity by 90% in our study. Our present work reveals mechanism of moisture effect on the shale absorption capacity and lays the foundations of evaluating the adsorbed gas in shale gas reservoir more accurately.
  • 1 Curtis JB. Fractured shale-gas systems. AAPG Bulletin, 2002, 86(11):1921-1938
    2 Lu XC, Li FC, Watson AT. Adsorption measurements in Devonian shales. Fuel, 1995, 74(4):599-603
    3 樊冬艳, 姚军, 孙海等. 考虑多重运移机制耦合页岩气藏压裂水平井数值模拟. 力学学报, 2015, 47(6):906-915(Fan Dongyan, Yao Jun, Sun Hai, et al. Numerical simulation of multi-fractured horizontal well in shale gas reservoir considering multiple gas transport mechanisms. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6):906-915(in Chinese))
    4 吴克柳, 李相方, 陈掌星等. 页岩气和致密砂岩气藏微裂缝气体传输特性. 力学学报, 2015, 47(6):955-964(Wu Keliu, Li Xiangfang, Chen Zhangxing, et al. Gas transport behavior through micro fractures of shale and tight gas reservoirs. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6):955-964(in Chinese))
    5 姚同玉, 黄延章, 李继山. 页岩气在超低渗介质中的渗流行为. 力学学报, 2012, 44(6):990-995(Yao Tongyu, Huang Yanzhang, Li Jishan. Flow regim for shale gas in extra low permeability porous media. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(6):990-995(in Chinese))
    6 郭为, 胡志明, 左罗等. 页岩基质解吸-扩散-渗流耦合实验及数学模型. 力学学报, 2015, 47(6):916-922(Guo Wei, Hu Zhiming, Zuo Luo, et al. Gas desorption-diffusion-seepage coupled experiment of shale matrix and mathematic model. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6):916-922(in Chinese))
    7 李相方, 蒲云超, 孙长宇等. 煤层气与页岩气吸附/解吸理论再认识. 石油学报, 2014,(6):1113-1129(Li Xiangfang, Pu Yunchao, Sun Changyu, et al. Recognition of absorption/desorption theory in coalbed methane reservoir and shale gas reservoir. Acta Petrolei Sinica, 2014,(6):1113-1129(in Chinese))
    8 Chareonsuppanimit P, Mohammad SA, Robinson Jr RL, et al. Highpressure adsorption of gases on shales:Measurements and modeling. International Journal of Coal Geology, 2012, 95:34-46
    9 Zhang T, Ellis GS, Ruppel SC, et al. Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems. Organic Geochemistry, 2012, 47:120-131
    10 Gasparik M, Ghanizadeh A, Bertier P, et al. High-pressure methane sorption isotherms of black shales from the Netherlands. Energy & Fuels, 2012, 26(8):4995-5004
    11 郭为, 熊伟, 高树生等. 温度对页岩等温吸附/解吸特征影响. 石油勘探与开发, 2013, 40(4):481-485(Guo Wei, Xiong Wei, Gao Shusheng, et al. Impact of temperature on the isothermal adsorption/desorption characteristics of shale gas. Petroleum Exploration and Development, 2013, 40(4):481-485(in Chinese))
    12 ASTM D1412-07. Standard test method for equilibrium moisture of coal at 96 to 97 percent relative humidity and 30℃. 2010
    13 Ross DJK, Bustin MR. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Marine and Petroleum Geology, 2009, 26(6):916-927
    14 Gasparika M, Bertierb P, Gensterbluma Y, et al. Geological controls on themethane storage capacity in organic-rich shales. International Journal of Coal Geology, 2014, 123:34-51
    15 方朝合, 黄志龙, 王巧智等. 富含气页岩储层超低含水饱和度成因及意义. 天然气地球科学, 2013, 25(3):471-476(Fang Chaohe, Huang Zhilong, Wang Qiaozhi, et al. Cause and significance of the ultra-low water saturation in gas-enriched shale reservoir. Natural Gas Geoscience, 2014, 25(3):471-476(in Chinese))
    16 刘洪林, 王红岩. 中国南方海相页岩超低含水饱和度特征及超压核心区选择指标. 天然气工业, 2013, 33(7):140-144(Liu Honglin, Wang Hongyan. Ultra-low water saturation characteristics and the identification of over-pressured play fairways of marine shales in south China. Natural Gas Industry, 2013, 33(7):140-144(in Chinese))
    17 Haghighi M, Ahmad M. Water saturation evaluation of murteree and roseneath shale gas reservoirs, cooper basin, australia using wire-line logs, focused ion beam milling and scanning electron microscopy. SPE Unconventional Resources Conference and Exhibition-Asia Pacific, 2013
    18 Curtis ME, Ambrose RJ, Sondergeld CH. Structural characterization of gas shales on the micro-and nano-scales. Canadian Unconventional Resources and International Petroleum Conference, 2010
    19 Odusina EO, Sondergeld CH, Rai CS. NMR study of shale wettability. Presented at the Canadian Unconventional Resources Conference, Alberta, Canada, 15-17 November. SPE-147371-MS. 2011
    20 王平全, 陈地奎. 用热失重法确定水合黏土水分含量及存在形式. 西南石油学院学报, 2006, (1):52-55(Wang Pingquan, Chen Dikui. The determination of water content and bound water type on hydro-clay surface by thermal-weightlessness. Journal of Southwest Petroleum Institute, 2006, (1):52-55(in Chinese))
    21 张雪芬, 陆现彩, 张林晔等. 页岩气的赋存形式研究及其石油地质意义. 地球科学进展,2010, (6):597-604(Zhang Xuefen, Lu Xiancai, Zhang Linye, et al. Occurrences of shale gas and their petroleum geological significance. Advances in Earth Science, 2010, (6):597-604(in Chinese))
    22 Boyer C, Kieschnick J, Suarez-Rivera R, et al. Producing gas from its source. Autumn, 2006
    23 Spears RW, Dudus D, Foulds A, et al. Shale gas core analysis:strategies for normalizing between laboratories and a clear need for standard materials. SPWLA 52nd Annual Logging Symposium, 2011
    24 Korb JP, Nicot B, Louis-Joseph A, et al. Dynamics and wettability of oil and water in oil shales. J Phys Chem C, 2014, 118(40):23212-23218
    25 Aylmore LAG, Quirk JP. The micropore size distribution of clay mineral systems. J Soil Sci, 1967, 18:1-17
    26 Curtis ME, Ambrose RJ, Sondergeld CH, et al. Transmission and scanning electron microscopy investigation of pore connectivity of gas shales on the nanoscale. North American Unconventional Gas Conference and Exhibition, 2011
    27 Sondergeld CH, Ambrose RJ, Rai CS, et al. Micro-structural studies of gas shales. SPE Unconventional Gas Conference, 2010
    28 Aringhieri R. Nanoporosity characteristics of some natural clay minerals and soils. Clays and Clay Minerals, 2004, 52(6):700-704
    29 吉利明, 邱军利, 夏燕青等. 常见黏土矿物电镜扫描微孔隙特征与甲烷吸附性. 石油学报, 2012, 33(2):249-256(Ji Liming, Qiu Junli, Xia Yanqing, et al. Micro-pore characteristics and methane adsorption properties of common clay minerals by electron microscope scanning. Acta Petrolei Sinica, 2012, 33(2):249-256(in Chinese))
    30 Chalmers GR, Bustin MR. The effects and distribution of moisture in gas shale reservoir systems. AAPG Annual Convention and Exhibition, 2010
    31 Mahadevan J, Sharma MM, Yortsos YC. Evaporative cleanup of water blocks in gas wells. SPE Journal, 2007, 12(2):209-216
    32 姚泾利, 王怀厂, 张辉等. 鄂尔多斯盆地东部上古生界致密砂岩超低含水饱和度气藏形成机理义. 天然气工业, 2014, 34(1):37-43(Yao Jingli, Wang Huaichang, Zhang Hui, et al. The formation mechanism of Upper Paleozoic tight sand gas reservoirs with ultralow water saturation in Eastern Ordos Basin. Natural Gas Industry, 2014, 34(1):37-43(in Chinese))
    33 张浩, 康毅力, 陈一健等. 致密砂岩气藏超低含水饱和度形成地质过程及实验模拟研究. 天然气地球科学, 2005, 16(2):186-189(Zhang Hao, Kang Yili, Chen Yijian, et al. The study of geology course and experiment simulation for forming ultra-low water saturation in tight sandstones gas reservoirs. Natural Gas Geoscience, 2005, 16(2):186-189(in Chinese))
    34 Zuluaga E, Muñoz NI, Obando GA. An Experimental study to evaluate water vaporisation and formation damage caused by dry gas flow through porous media. International Symposium on Oilfield Scale, 2001
    35 Tharwat T. Encyclopedia of Colloid and Interface Science. Springer, 2013
    36 李靖, 李相方, 李莹莹等. 储层含水条件下致密砂岩/页岩无机质纳米孔隙气相渗透率模型. 力学学报, 2015, 47(6):932-944(Li Jing, Li Xiangfang, Li Yingying, et al. Model for gas transport in nanopores of shale and tight formation under reservoir condition. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6):932-944(in Chinese))
    37 Adamson AW. Physical Chemistry of Surfaces, 5th ed, John Wiley, New York, 1990
    38 恽正中. 表面与界面物理. 中国电子科技大学出版社,1993
    39 Starov VM, Velarde MG, Radke CJ.Wetting and Spreading Dynamics. CRC Press, 2007
    40 Takahashi S, Kovscek AR. Wettability estimation of lowpermeability, siliceous shale using surface forces. Journal of Petroleum Science and Engineering, 2010, 75(1):33-43
    41 Churaev NV. Contact angles and surface forces. Advances in Colloid and Interface Science, 1995, 58(2):87-118
    42 Tuller M, Or D, Dudley LM. Adsorption and capillary condensation in porous media:Liquid retention and interfacial configurations in angular pores. Water Resources Research, 1999, 35(7):1949-1964
    43 Churaev NV, Adolphs SG. Isotherms of capillary condensation influencedby formation of adsorption films. J Colloid Interface Sci, 2000, 221(2):246-253
    44 李靖, 李相方, 李莹莹等. 页岩黏土孔隙气-液-固三相作用下甲烷吸附模型. 煤炭学报, 2015, 40(7):1580-1587(Li Jing, Li Xiangfang, Li Yingying, et al. Methane adsorption model for clay with gas-liquid-solid interaction. Journal of China Coal Society, 2015, 40(7):1580-1587(in Chinese))
    45 Langmuir I. The evaporation, condensation and reflection of molecules and the mechanism of adsorption. Journal of the Franklin Institute, 1917, 183(1):101-102
    46 Jin Z, Firoozabadi A. Effect of water on methane and carbon dioxide sorption in clay minerals by Monte Carlo simulations. Fluid Phase Equilibria, 2014, 382:10-20
    47 近藤精一(日), 石川达雄(日), 安部郁夫(日). 吸附科学. 北京:化学工业出版社, 2006
    48 Ong SK, Lion LW. Mechanisms for trichloroethylene vapor sorption onto soil minerals. Journal of Environmental Quality, 1991, 20(1):180-188
    49 ASTM E104-2002, 2007. Standard practice for maintaining constant relative humidity by means of aqueous solutions
    50 Drits VA, McCarty DK. The nature of structure-bonded H2O in illite and leucophyllite from dehydration and dehydroxylation experiments. Clays & Clay Minerals, 2007, 55(1):45-58
  • 期刊类型引用(22)

    1. 周新,盛建龙,叶祖洋. 基于LBM的粗糙裂隙内两相驱替渗流特性模拟研究. 力学学报. 2024(05): 1475-1487 . 本站查看
    2. 冯东,唐永槐,李阳,李相方,李东海,贾红娟. 延安地区陆相页岩气动态储量计算方法研究. 非常规油气. 2023(01): 27-31+43 . 百度学术
    3. 穆英,胡志明,邹才能. 海相页岩储层水岩作用及其对开发效果的影响研究进展. 天然气与石油. 2023(03): 64-73 . 百度学术
    4. 吴建发,赵圣贤,李博,刘永旸,黄山,何沅翰,苑术生,刘绍军,隆辉,王高翔,曹埒焰,尹美璇. 四川盆地南部地区志留系龙马溪组页岩基质孔隙水赋存规律. 天然气工业. 2023(07): 44-54 . 百度学术
    5. 胡笑钏,陈彦璋,孙广哲,吕毅. H_2O吸附对Cu表面二次电子发射特性的影响. 高电压技术. 2023(09): 3812-3819 . 百度学术
    6. 常进,许可,易新斌,刘臣,赖建林,王天一. 压裂液对页岩储层伤害机理研究综述. 应用化工. 2023(10): 2920-2923+2928 . 百度学术
    7. 王鹏威,刘光祥,刘忠宝,陈筱,李鹏,蔡钡钡. 川东南—黔西北地区上二叠统龙潭组海陆过渡相页岩气富集条件及主控因素. 天然气地球科学. 2022(03): 431-440 . 百度学术
    8. 张晟庭,李靖,陈掌星,张涛,吴克柳,冯东,毕剑飞,李相方. 气液非混相驱替过程中的卡断机理及模拟研究. 力学学报. 2022(05): 1429-1442 . 本站查看
    9. 邓佳,吕子健,张奇,宋付权,李久江,赵广杰. 页岩储层纳微米孔隙CO_2/CH_4吸附及驱替特性研究进展. 力学学报. 2021(10): 2880-2890 . 本站查看
    10. 王瑞,吴新民,马云,白海涛. 页岩气储层工作液伤害机理研究现状. 科学技术与工程. 2020(03): 867-873 . 百度学术
    11. 李俊乾,卢双舫,张鹏飞,李文镖,荆铁亚,冯文俊. 页岩基质孔隙水定量表征及微观赋存机制. 石油学报. 2020(08): 979-990 . 百度学术
    12. 胡云皓,于青春. 碳酸钙纳米孔隙中凝聚水数学模型及实验研究. 中国岩溶. 2020(03): 311-318 . 百度学术
    13. 张雅怡,房晓红,曾凡桂. 甲烷在高岭石狭缝中吸附的分子模拟. 矿产综合利用. 2019(01): 130-134+113 . 百度学术
    14. 沈伟军,李熙喆,鲁晓兵,万玉金,郭伟,左罗. 基于等温吸附的页岩水分传输特征研究. 力学学报. 2019(03): 932-939 . 本站查看
    15. 王庆波. 黏土矿物对页岩吸附气量的影响——基于川东南丁山地区龙马溪组页岩样品的实验分析. 重庆科技学院学报(自然科学版). 2019(03): 20-24 . 百度学术
    16. 唐巨鹏,孙胜杰,包思远. 高岭石甲烷吸附规律的分子模拟研究. 油气地质与采收率. 2019(04): 43-49 . 百度学术
    17. 李靖,李相方,陈掌星,王香增,吴克柳,孙政,曲世元. 页岩储层束缚水影响下的气相渗透率模型. 石油科学通报. 2018(02): 167-182 . 百度学术
    18. 张博,姜振学,原园,李微,李耀华. 灰色关联度分析法在筛选页岩含气量主控因素中的应用. 石油科学通报. 2018(02): 134-143 . 百度学术
    19. 齐荣荣,宁正福,张爽,黄亮,陈志礼. 考虑含水和多组分气体的页岩气含气量预测模型. 煤炭学报. 2018(09): 2553-2561 . 百度学术
    20. 姚军,宋文辉,李阳,孙海,杨永飞,张磊. 有机质孔隙对页岩气流动能力影响研究. 中国科学:物理学 力学 天文学. 2017(09): 55-66 . 百度学术
    21. 刘文超,刘曰武. 低渗透煤层气藏中气-水两相不稳定渗流动态分析. 力学学报. 2017(04): 828-835 . 本站查看
    22. 冯东,李相方,王香增,李靖,石军太,张涛,李沛桓,陈宇. 不同含水条件下黏土孔隙分布特征及甲烷吸附能力. 煤炭学报. 2017(09): 2402-2413 . 百度学术

    其他类型引用(26)

计量
  • 文章访问数:  924
  • HTML全文浏览量:  110
  • PDF下载量:  663
  • 被引次数: 48
出版历程
  • 收稿日期:  2015-12-22
  • 修回日期:  2016-04-27
  • 刊出日期:  2016-09-17

目录

    /

    返回文章
    返回