EI、Scopus 收录
中文核心期刊

高亚声速湍流喷流气动噪声数值分析

冯峰, 郭力, 王强

冯峰, 郭力, 王强. 高亚声速湍流喷流气动噪声数值分析[J]. 力学学报, 2016, 48(5): 1049-1060. DOI: 10.6052/0459-1879-15-403
引用本文: 冯峰, 郭力, 王强. 高亚声速湍流喷流气动噪声数值分析[J]. 力学学报, 2016, 48(5): 1049-1060. DOI: 10.6052/0459-1879-15-403
Feng Feng, Guo Li, Wang Qiang. NUMERICAL INVESTIGATION OF NOISE OF A HIGH SUBSONIC TURBULENT JET[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1049-1060. DOI: 10.6052/0459-1879-15-403
Citation: Feng Feng, Guo Li, Wang Qiang. NUMERICAL INVESTIGATION OF NOISE OF A HIGH SUBSONIC TURBULENT JET[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1049-1060. DOI: 10.6052/0459-1879-15-403
冯峰, 郭力, 王强. 高亚声速湍流喷流气动噪声数值分析[J]. 力学学报, 2016, 48(5): 1049-1060. CSTR: 32045.14.0459-1879-15-403
引用本文: 冯峰, 郭力, 王强. 高亚声速湍流喷流气动噪声数值分析[J]. 力学学报, 2016, 48(5): 1049-1060. CSTR: 32045.14.0459-1879-15-403
Feng Feng, Guo Li, Wang Qiang. NUMERICAL INVESTIGATION OF NOISE OF A HIGH SUBSONIC TURBULENT JET[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1049-1060. CSTR: 32045.14.0459-1879-15-403
Citation: Feng Feng, Guo Li, Wang Qiang. NUMERICAL INVESTIGATION OF NOISE OF A HIGH SUBSONIC TURBULENT JET[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1049-1060. CSTR: 32045.14.0459-1879-15-403

高亚声速湍流喷流气动噪声数值分析

基金项目: 国家自然科学基金(11302215,11102198)和国家“973”计划(2014CB744100)资助项目.
详细信息
    通讯作者:

    王强,研究员,主要研究方向:流动稳定性与流动控制.E-mail:qwang327@163.com

  • 中图分类号: V211.3

NUMERICAL INVESTIGATION OF NOISE OF A HIGH SUBSONIC TURBULENT JET

  • 摘要: 为适应航空噪声管制规定要求,发动机喷流噪声控制成为目前气动声学研究中的重要课题,预测分析喷流噪声辐射并揭示其产生机理将为噪声控制奠定基础.采用高精度并行LES(large eddy simulation)方法计算分析马赫数0.9高亚声速喷流的湍流演化和气动噪声现象.首先,仔细验证喷流LES湍流场计算保真性,并分析流场中不同尺度涡结构的演化形态.其次,利用可穿透面FW-H(Ffowcs Williams and Hawkings)方法外推喷流近场声源数据获得精确声辐射远场,进而分析声场主导声模态特性.最后,通过分析声源机制、分离声模态等方法研究势流核末端大尺度拟序涡运动演化形成的低波数波包在噪声主导声模态产生中的重要作用.数值结果表明LES结合可穿透面FW-H方法可精确预测高亚声速喷流的流场及声场特征,且数值分析揭示涡环对并形成的大尺度拟序结构在喷流中心线上沿径向融合,产生了在远场低方位角占优的主导声模态,并构成强指向性声场,噪声峰值方位角约为30°.
    Abstract: To meet the regulations of aviation noise, noise control of jet engine has grown to become a major issue in aeroacoustics, therefore prediction of jet noise and unfolding its generation mechanism would lay a solid foundation for the noise control. Turbulence evolution and noise of a Mach 0.9 high subsonic jet are investigated by high-order accurate parallel LES (large eddy simulation). Firstly, the fidelity of turbulence result computed by LES is rigorously verified, and the evolution of multi-scale vortex structures is carefully analyzed. Secondly, based on the acoustic source in near field of the jet, the penetrable FW-H (Ffowcs Williams and Hawkings) wave extrapolation method is used to solve the farfield acoustic and analyze the behavior of the dominant modes. Finally, via analyzing mechanism of acoustic source and separating the acoustic modes, the role of the large-scale coherent vortex evolution in the end of potential core play in dominant acoustic modes generation as a form of low wave number wavepackets is investigated. Numerical results show that LES combined with the penetrable FW-H method is able to accurately predict the flow and acoustic features of the high subsonic jet. Furthermore, numerical analysis reveals that the large-scale coherent structure generated by the vortex ring pairing is merging along the jet centerline, which producing the primary acoustic modes dominated at the low azimuth direction and forming a superdirective acoustic field. The azimuth angle of the peak intensity is near to 30°.
  • 1 Lighthill MJ. On sound generated aerodynamically I. General theory. Proc R Soc London A, 1952, 211(1107):564-587
    2 Lighthill MJ. On sound generated aerodynamically Ⅱ. Turbulence as a source of sound. Proc R Soc London A, 1954, 222(1148):1-32
    3 Kibens V. Discrete noise spectrum generated by an acoustically excited jet. AIAA J, 1980, 18(4):434-441
    4 Laufer J, Yen T. Noise generation by a low-Mach-number jet. J Fluid Mech, 1983, 134:1-31
    5 Chu WT, Kaplan RE. Use of a spherical concave reflector for jetnoise-source distribution diagnosis. J Acoust Soc Am, 1976, 59(6):1268-1277
    6 Juv & #233;D, Sunyach M, Comte-Bellot G. Intermittency of the noise emission in subsonic cold jets. J Sound Vib, 1980, 71(3):319-332
    7 Tam CKW. Jet noise:Since 1952. Theor Comp Fluid Dyn, 1998, 10:393-405
    8 Tam CKW, Golebiowski M, Seiner JM. On the two components of turbulent mixing noise from supersonic jets. AIAA Paper 1996-1716, 1996
    9 Freund JB. Noise sources in a low-Reynold-number turbulent jet at Mach 0. 9. J Fluid Mech, 2001, 438:277-305
    10 Stromberg JL, McLaughlin DK, Troutt TR. Flow field and acoustic properties of a Mach number 0.9 jet at a low Reynold number. J Sound Vib, 1980, 72(2):159-176
    11 Bogey C, Bailly C, Juv & #233;D. Noise investigation of a high subsonic, moderate Reynold number jet using a compressible LES. Theor Comp Fluid Dyn, 2003, 16(4):273-297
    12 Bogey C, Bailly C. Investigation of subsonic jet noise using LES:Mach and Reynold number effects. AIAA Paper 2004-3023, 2004
    13 Viswanathan K, Shur ML, Spalart PR, et al. Computation of the flow and noise of round and beveled nozzles. AIAA Paper 2006-2445, 2006
    14 Goldstein ME. On identifying the true sources of aerodynamic sound. J Fluid Mech, 2005, 526:337-347
    15 Jordan P, Colonius T. Wave packets and turbulent jet noise. Annu Rev Fluid Mech, 2013, 45:173-195
    16 Obrist D. Directivity of acoustic emissions from wave packets to the far field. J Fluid Mech, 2009, 640:165-186
    17 Tam CKW, Webb JC. Dispersion-relation-preserving finite difference schemes for computational acoustics. J Comput Phys, 1993, 107(2):262-281
    18 Tam CKW. Computational aeroacoustics:issues and methods. AIAA J, 1995, 33(10):1788-1796
    19 Berland J, Bogey C, Bailly C. Optimized explicit schemes:matching and boundary schemes and 4 th-order Runge-Kutta algorithm. AIAA Paper 2004-2814, 2004
    20 Bogey C, de Cacqueray N, Bailly C. A shock-capturing methodology based on adaptative spatial filtering for high-order non-linear computations. J Comput Phys, 2009, 228(5):1447-1465
    21 Lyrintzis AS, Uzun A. Integral techniques for jet aeroacoustics calculations. AIAA Paper 2001-2253, 2001
    22 Bogey C, Bailly C. Three-dimensional non-reflective boundary conditions for acoustic simulations:far field formulation and validation test cases. Acta Acustica, 2002, 88(4):463-471
    23 Panchapakesan NR, Lumley JL. Turbulence measurements in axisymmetric jets of air and helium. Part I. Air jet. J Fluid Mech, 1993, 246:197-223
    24 Hussein HJ, Capp SP, George WK. Velocity measurements in a high-Reynold-number, momentum-conserving, axisymmetric, turbulent jet. J Fluid Mech, 1994, 258:31-75
    25 Bodony DJ, Lele SK. On using large-eddy simulation for the prediction of noise from cold and heated turbulent jets. Phys. Fluids, 2005, 17(8):85-103
    26 Bogey C, Bailly C. LES of high Reynold, high subsonic jet:effects of the inflow conditions on flow and noise. AIAA Paper 2003-3170, 2003
    27 Arakeri VH, Krothapalli A, Siddavaram V, et al. On the use of microjets to suppress turbulence in a Mach 0.;
    9 axisymmetric jet. J Fluid Mech, 2003, 490:75-98
    28 Lau JC, Morris PJ, Fisher MJ. Measurements in subsonic and supersonic free jets using a laser velocimeter. J Fluid Mech, 1979, 93(1):1-27
    29 Mollo-Christensen E, Kolpin MA, Martucelli JR. Experiments on jet flows and jet noise far-field spectra and directivity patterns. J Fluid Mech, 1964, 18(2):285-301
    30 Lush PA. Measurements of subsonic jet noise and comparison with theory. J Fluid Mech, 1971, 46(3):477-500
  • 期刊类型引用(8)

    1. 闫国华,冯叔阳,刘勇,李建福. 基于Mohring声类比发动机喷流噪声数值计算. 航空发动机. 2023(01): 53-61 . 百度学术
    2. 张睿琳,周莉,王占学,史经纬. S弯喷管喷流噪声特性研究. 推进技术. 2022(07): 185-193 . 百度学术
    3. 齐龙舟,冯和英,赵鲲,张俊龙,王海涛,杨成浩. 凹槽结构对冲击射流流场和声场特性的影响研究. 振动与冲击. 2022(22): 105-112 . 百度学术
    4. 李凰立,苏虹,沈丹,张津泽. 飞行器脉动压力的CAA方法研究. 强度与环境. 2019(02): 13-20 . 百度学术
    5. 时北极,何国威,王士召. 基于滑移速度壁模型的复杂边界湍流大涡模拟. 力学学报. 2019(03): 754-766 . 本站查看
    6. 张明辉,常伟,徐卫东,王建武. 射流气动噪声的研究现状及发展趋势. 科学技术与工程. 2018(06): 195-200 . 百度学术
    7. 吴霆,时北极,王士召,张星,何国威. 大涡模拟的壁模型及其应用. 力学学报. 2018(03): 453-466 . 本站查看
    8. 安翼,莫晃锐,刘青泉. 高速列车头型长细比对气动噪声的影响. 力学学报. 2017(05): 985-996 . 本站查看

    其他类型引用(3)

计量
  • 文章访问数:  1371
  • HTML全文浏览量:  99
  • PDF下载量:  440
  • 被引次数: 11
出版历程
  • 收稿日期:  2015-11-05
  • 修回日期:  2016-07-25
  • 刊出日期:  2016-09-17

目录

    /

    返回文章
    返回