EI、Scopus 收录
中文核心期刊

含水合物沉积物三轴剪切试验与损伤统计分析

刘乐乐, 张旭辉, 刘昌岭, 业渝光

刘乐乐, 张旭辉, 刘昌岭, 业渝光. 含水合物沉积物三轴剪切试验与损伤统计分析[J]. 力学学报, 2016, 48(3): 720-729. DOI: 10.6052/0459-1879-15-400
引用本文: 刘乐乐, 张旭辉, 刘昌岭, 业渝光. 含水合物沉积物三轴剪切试验与损伤统计分析[J]. 力学学报, 2016, 48(3): 720-729. DOI: 10.6052/0459-1879-15-400
Liu Lele, Zhang Xuhui, Liu Changling, Ye Yuguang. TRIAXIAL SHEAR TESTS AND STATISTICAL ANALYSES OF DAMAGE FOR METHANE HYDRATE-BEARING SEDIMENTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 720-729. DOI: 10.6052/0459-1879-15-400
Citation: Liu Lele, Zhang Xuhui, Liu Changling, Ye Yuguang. TRIAXIAL SHEAR TESTS AND STATISTICAL ANALYSES OF DAMAGE FOR METHANE HYDRATE-BEARING SEDIMENTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 720-729. DOI: 10.6052/0459-1879-15-400
刘乐乐, 张旭辉, 刘昌岭, 业渝光. 含水合物沉积物三轴剪切试验与损伤统计分析[J]. 力学学报, 2016, 48(3): 720-729. CSTR: 32045.14.0459-1879-15-400
引用本文: 刘乐乐, 张旭辉, 刘昌岭, 业渝光. 含水合物沉积物三轴剪切试验与损伤统计分析[J]. 力学学报, 2016, 48(3): 720-729. CSTR: 32045.14.0459-1879-15-400
Liu Lele, Zhang Xuhui, Liu Changling, Ye Yuguang. TRIAXIAL SHEAR TESTS AND STATISTICAL ANALYSES OF DAMAGE FOR METHANE HYDRATE-BEARING SEDIMENTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 720-729. CSTR: 32045.14.0459-1879-15-400
Citation: Liu Lele, Zhang Xuhui, Liu Changling, Ye Yuguang. TRIAXIAL SHEAR TESTS AND STATISTICAL ANALYSES OF DAMAGE FOR METHANE HYDRATE-BEARING SEDIMENTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 720-729. CSTR: 32045.14.0459-1879-15-400

含水合物沉积物三轴剪切试验与损伤统计分析

基金项目: 国家自然科学基金资助项目(41376078,11402131,11272314).
详细信息
    通讯作者:

    刘乐乐,助理研究员,主要研究方向:天然气水合物开采涉及的力学问题研究.E-mail:liuleleleo@163.com

  • 中图分类号: TU411.7

TRIAXIAL SHEAR TESTS AND STATISTICAL ANALYSES OF DAMAGE FOR METHANE HYDRATE-BEARING SEDIMENTS

  • 摘要: 天然气水合物开采诱发水合物分解,削弱水合物地层强度,可能导致地层滑动和生产平台倒塌等工程地质灾害,对水合物开采安全性构成严重威胁.深入理解含水合物沉积物力学性质并建立合理的本构关系模型是水合物开采安全性评价的前提条件.在自主研发的含水合物沉积物力学性质测试实验装置上,采用饱和水海砂沉积物气体扩散法制备了含水合物沉积物样品,并开展了系列的排水三轴剪切试验,通过时域反射技术实现了样品中水合物饱和度的实时在线测量;基于复合材料的罗伊斯(Reuss)应力串联模型和沃伊特(Voigt)应变并联模型提出了含水合物沉积物等效弹性模量的细观力学混合律模型,结合损伤统计理论和摩尔-库伦破坏准则改进了含水合物沉积物的本构关系模型.结果表明:随着水合物饱和度的增加和有效围压的减小,应力-应变曲线由应变硬化型变为应变软化型,割线模量和峰值强度均随水合物饱和度与有效围压的增加而提高,黏聚力受水合物饱和度影响明显,而内摩擦角基本不变;提出的等效弹性模量细观力学混合律模型与改进的本构关系模型均具有良好的适用性,模型参数少且物理意义明确.
    Abstract: Any perturbation to the thermodynamic equilibrium by exploitation may push out hydrate-bearing sediments (HBS) out of the stability zone, thus inducing hydrate dissociation, loss of cementation, which, in turn, can cause submarine landslides and loss of platform foundations during gas extraction operations. Therefore, a thorough understanding of mechanical properties of HBS is of great importance for stability analyses under di erent environmental conditions. A series of drained triaxial shear tests were carried out on a self-developed apparatus with the samples prepared by gas diffusion method, in which the time domain reflectometry technique was used in measurement of hydrate saturations in real time. A meso-mechanical and mixed model for the elastic modulus of HBS was proposed based on the classical series and parallel models, including the parameter of statistical force transfer paths between particles in HBS. A constitutive model of HBS was improved by coupling the statistical damage theory and the Mohr-Coulomb failure criterion. It is shown that the stress-strain curve changes from strain-hardening into strain-softening with the increase of hydrate saturation and the decrease of e ective confining pressure; the secant modulus and the peak strength of HBS increase when the hydrate saturation and the e ective confining pressure increase; the cohesion of HBS increases obviously with the increase of hydrate content, and the internal friction angle changed little with the increase of hydrate amount; the proposed mixed model for elastic modulus and the constitutive model of HBS are both reasonable and feasible.
  • 1 Bouriak S, Vanmste M, Saoutkine A. Inferred gas hydrates and clay diapers near the Storregga slide on the southern edge of the Vøring Plateau, offshore Norway. Marine Geology, 2000, 163: 125-148
    2 Winters WJ,Waite WF, Mason DH, et al. Methane gas hydrate effect on sediment acoustic and strength properties. Journal of Petroleum Science and Engineering, 2007, 56: 127-135
    3 石要红, 张旭辉, 鲁晓兵等. 南海水合物粘土沉积物力学特性试验模拟研究. 力学学报, 2015, 47(3): 521-528 (Shi Yaohong, Zhang Xuhui, Lu Xiaobing, et al. Exmental study on the static mechanical properties of hydrate-bearing silty-clay in the South China Sea. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(3):521-528 (in Chinese))
    4 Winters WJ, Pecher IA, Waite WF, et al. Physical properties and rock physics models of sediment containing natural and laboratoryformed methane gas hydrate. American Mineralogist, 2004, 89:1221-1227
    5 Hyodo M, Nakata Y, Yoshimoto N, et al. Basic research on the mechanical behavior of methane hydrate-sediments mixture. Soils and Foundations, 2005, 45(1): 75-85
    6 Masui A, Miyazaki K, Haneda H, et al. Mechanical properties of natural gas hydrate bearing sediments retrieved from Eastern Nankai Trough. In: Proceedings of the Offshore Technology Conference, Houston, USA, 2008
    7 Hyodo M, Yoneda J, Yoshimoto N, et al. Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed. Soils and Foundations, 2013, 53(2): 299-314
    8 张旭辉, 王淑云, 李清平等. 天然气水合物沉积物力学性质的试验研究. 岩土力学, 2010, 31(10): 3069-3074 (Zhang Xuhui, Wang Shuyun, Li Qingping, et al. Experimental study of mechanical properties of gas hydrate deposits. Rock and Soil Mechanics, 2010,31(10): 3069-3074 (in Chinese))
    9 魏厚振, 颜荣涛, 陈盼等. 不同水合物含量含二氧化碳水合物砂三轴试验研究. 岩土力学, 2011, 32(S2): 198-203 (Wei Houzhen, Yan Rongtao, Chen Pan, et al. Deformation and failure behavior of carbon dioxide hydrate-bearing sands with different hydrate contents under triaxial shear tests. Rock and Soil Mechanics, 2011, 32(S2):198-203 (in Chinese))
    10 颜荣涛, 韦昌富, 魏厚振等. 水合物形成对含水合物砂土强度影响. 岩土工程学报, 2012, 34(7): 1234-1240 (Yan Rongtao, Wei Changfu, Wei Houzhen, et al. Effect of hydrate formation on mechanical strength of hydrate-bearing sand. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1234-1240 (in Chinese))
    11 李洋辉, 宋永臣, 刘卫国等. 温度和应变速率对水合物沉积物强度影响试验研究. 天然气勘探与开发, 2012, 35(1): 50-53
    12 李洋辉, 宋永臣, 于锋等. 围压对含水合物沉积物力学特性的影响. 石油勘探与开发, 2011, 38(5): 637-640 (Li Yanghui, Song Yongchen, Yu Feng, et al. Effect of confining pressure on mechanical behavior of methane hydrate-bearing sediments. Petroleum Exploration and Development, 2011, 38(5): 637-640 (in Chinese))
    13 业渝光, 张剑, 胡高伟等. 天然气水合物超声和时域反射联合探测技术. 海洋地质与第四纪地质, 2008, 28(5): 101-107 (Ye Yuguang, Zhang Jian, Hu Gaowei, et al. Combined detection technique for ultrasonic and time domain reflectometry in gas hydrate. Marine Geology & Quaternary Geology, 2008, 28(5): 101-107 (in Chinese))
    14 孙中明, 张剑, 刘昌岭等. 沉积物中甲烷水合物饱和度测定及其力学特性研究. 实验力学, 2013, 28(6): 747-754 (Sun Zhongming, Zhang Jian, Liu Changling, et al. On the determination of methane hydrate saturation and mechanical properties of sediments containing methane hydrate. Journal of Experimental Mechanics, 2013,28(6): 747-754 (in Chinese))
    15 Waite WF, Santamarina JC, Cortes DD, et al. Physical properties of hydrate-bearing sediments. Reviews of Geophysics, 2009, 47(4): RG4003
    16 杨期君, 赵春风. 含气水合物沉积物弹塑性损伤本构模型探讨. 岩土力学, 2014, 35(4): 991-997 (Yang Qijun, Zhao Chunfeng. A constitutive model coupling elastoplasticity and damage for methane hydrate-bearing sediments. Rock and Soil Mechanics, 2014, 35(4):991-997 (in Chinese))
    17 Sultan N, Garziglia S. Geomechanical constitutive modeling of gashydrate- bearing sediments. In: Proceedings of the 7th International Conference on Gas Hydrates, Edinburgh, England, 2011.
    18 Miyazaki K, Aoki K, Tenma N. A nonlinear elastic constitutive model for artificial methane-hydrate-bearing sediment. In: Proceedings of the 7th International Conference on Gas Hydrates, Edinburgh, England, 2011
    19 Pinkert S, Grozic J L H. Prediction of the mechanical response of hydrate-bearing sands. Journal of Geophysical Research, Solid Earth, 2014, 119: 4695-4707
    20 吴二林, 魏厚振, 颜荣涛等. 考虑损伤的含天然气水合物沉积物本构模型. 岩石力学与工程学报, 2012, 31(S1): 3045-3050 (Wu Erlin, Wei Houzhen, Yan Rongtao, et al. Constitutive model for gas hydrate-bearing sediments considering damage. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S1): 3045-3050 (in Chinese))
    21 吴二林, 韦昌富, 魏厚振等. 含天然气水合物沉积物损伤统计本构模型. 岩土力学, 2013, 34(1): 60-65 (Wu Erlin, Wei Changfu, Wei Houzhen, et al. A statistical damage constitutive model of hydratebearing sediments. Rock and Soil Mechanics, 2013, 34(1): 60-65 (in Chinese))
    22 田云德, 秦世伦. 符合材料等效弹性模量的改进混合律方法. 西南交通大学学报, 2005, 40(6): 783-787 (Tian Yunde, Qin Shilun. Improved mixed-model method of valid elastic modulus of composites. Journal of Southwest Jiaotong University, 2005, 40(6): 783-787 (in Chinese))
    23 曹文贵, 张升. 基于Mohr-Coulomb 准则的岩石损伤统计分析方法研究. 湖南大学学报(自然科学版), 2005, 32(1): 43-47 (Cao Wengui, Zhang Sheng. Study on the statistical analysis of rock damage based on Mohr-Coulomb criterion. Journal of hunan University (Natural Sciences), 2005, 32(1): 43-47 (in Chinese))
    24 涂运中, 蒋国盛, 张凌等. SDS 和THF 对甲烷水合物合成影响的实验研究. 现代地质, 2008, 22(3): 485-488 (Tu Yunzhong, Jiang Guosheng, Zhang Ling, et al. The study on effects of SDS and THF on methane hydrate formation. Geoscience, 2008, 22(3): 485-488 (in Chinese))
    25 Wright JF, Nixon FM, Dallinore SR, et al. A method for direct measurement of gas hydrate amounts based on the bulk dielectric properties of laboratory test media. In: Proceedings of the 4th International Conference on Gas Hydrates, Yokohama, Japan, 2002
    26 胡高伟, 业渝光, 刁少波等. 时域反射技术测量海洋沉积物含水量的研究. 现代地质, 2010, 24(3): 622-626 (Hu Gaowei, Ye Yuguang, Diao Shaobo, et al. Research of time domain reflectometry in measuring water content of marine sediments. Geoscience, 2010, 24(3):622-626 (in Chinese))
    27 胡高伟, 李承峰, 业渝光等. 沉积物孔隙空间天然气水合物微观分布观测. 地球物理学报, 2014, 57(5): 1675-1682 (Hu Gaowei, Li Chengfeng, Ye Yuguang, et al. Observation of gas hydrate distribution in sediment pore space.Chinese Journal of Geophysics, 2014,57(5): 1675-1682 (in Chinese))
    28 Ghiassion H, Grozic JLH. Strength behavior of methane hydrate bearing sand in undrained triaxial testing. Marine and Petroleum Geology, 2013, 43: 310-319
    29 Masui A, Haneda H, Gata Y O, et al. Effects of methane hydrate formation on shear strength of synthetic methane hydrate sediments. In: Proceedings of the 15th ISOPE, Seoul, Korea, 2005: 364-369
    30 Miyazaki K, Masui A, Yamaguchi T, et al. Investigation of deformation mechanism for methane hydrate sediment based upon mechanical properties in unloading and reloading process under triaxial compression. In: Proceedings of the 8th ISOPE-OMS, Chennai, India, 2009: 102-106
    31 刘芳, 寇晓勇, 蒋明镜等. 含水合物沉积物强度特性的三轴试验研究. 岩土工程学报, 2013, 35(8): 1565-1572 (Liu Fang, Kou Xiaoyong, Jiang Mingjing, et al. Triaxial shear strength of synthetic hydrate-bearing sediments. Chinese Journal of Geotechnical Engineering,2013, 35(8): 1565-1572 (in Chinese))
    32 Hill R. A self-consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids, 1965, 13(4): 213-222
    33 Zhang XH, Liu LL, Zhou JB, et al. A model for the elastic modulus of hydrate-bearing sediments. International Journal of Offshore and Polar Engineering, 2015, 25(4): 314-319
    34 田云德, 秦世伦. 复合材料等效弹性模量的改进混合律方法. 西南交通大学学报, 2005, 40(6): 783-787 (Tian Yunde, Qin Shilun. Improved mixed-model method of valid elastic modulus of composites. Journal of Southwest Jiao Tong University, 2005, 40(6): 783-787 (in Chinese))
    35 Lemaitre J. How to use damage mechanics. Nuclear Engineering and Design, 1984, 80(2): 233-245
    36 李广信. 高等土力学. 北京: 清华大学出版社, 2004 (Li Guangxin. Advanced Soil Mechanics. Beijing: Tsinghua University Press,2004 (in Chinese))
    37 曹文贵, 方祖烈, 唐学军. 岩石损伤软化统计本构模型之研究. 岩石力学与工程学报, 1998, 17(6): 628-633 (Cao Wengui, Fang Zulie, Tang Xuejun. A study of statistical constitutive model for soft and damage rocks. Chinese Journal of Rock Mechanics and Engineering, 1998, 17(6): 628-633 (in Chinese))
    38 宁建国, 王慧, 朱志武等. 基于细观力学方法的冻土本构模型研究. 北京理工大学学报, 2005, 25(10): 847-851 (Ning Jianguo, Wang Hui, Zhu Zhiwu, et al. Investigation of the constitutive model of frozen soil based on mesomechanics. Transaction of Beijing Institute of Technology, 2005, 25(10): 847-851 (in Chinese))
    39 Sloan ED, Koh CA. Clathrate Hydrates of Natural Gases. USA: CRC Press, 2008
  • 期刊类型引用(32)

    1. 宋杰,刘乐乐,刘涛,张永超,杨磊,万义钊. 海洋含气土高应力加卸载变形特征与渗流规律. 力学学报. 2025(02): 545-558 . 本站查看
    2. 周瑞,白冰,杨光昌. 基于颗粒重组理论的水合物沉积物温-压耦合热力学模型. 岩土工程学报. 2024(06): 1226-1235 . 百度学术
    3. 张玉,陶子卓,栾雅琳,狄圣杰,林亮. 分解条件下含可燃冰砂土–开采井界面弱化规律试验研究. 岩石力学与工程学报. 2024(S2): 3988-3999 . 百度学术
    4. 刘芳,冯馨,孙皓宇,张旭辉. 水合物分解中深水基础抗拔性能模型试验研究. 防灾减灾工程学报. 2023(02): 359-365 . 百度学术
    5. 张艺博,温欣,靳继凯,赵春晖. 一种考虑胶结与损伤影响的深海能源土弹塑性本构模型. 工业技术与职业教育. 2023(05): 15-19 . 百度学术
    6. 于航,戚承志,朱守东,赵发,王晓娇. 深海能源土抗剪强度的理论研究. 长江科学院院报. 2022(05): 119-124+131 . 百度学术
    7. 康宇. 三轴压缩下含瓦斯水合物煤体力学特性的离散元研究. 煤炭技术. 2022(10): 106-110 . 百度学术
    8. 赵亚鹏,刘乐乐,孔亮,桑松魁,王兴,刘佳棋. 黏质及砂质能源土统一的弹塑性本构模型. 岩石力学与工程学报. 2022(12): 2579-2591 . 百度学术
    9. 吴杨,崔杰,廖静容,兵动正幸. 不同细颗粒含量甲烷水合物沉积物三轴剪切试验研究. 岩土工程学报. 2021(01): 156-164 . 百度学术
    10. 梁文鹏,周家作,陈盼,韦昌富. 基于均匀化理论的含水合物土弹塑性本构模型. 岩土力学. 2021(02): 481-490 . 百度学术
    11. 周远,韦昌富,周家作,陈盼,魏厚振. 气体水合物喷射合成与直剪试验系统的研制与应用. 岩土力学. 2021(08): 2311-2320 . 百度学术
    12. 赵亚鹏,刘乐乐,孔亮,刘昌岭,吴能友. 含天然气水合物土微观力学特性研究进展. 力学学报. 2021(08): 2119-2140 . 本站查看
    13. 朱一铭,王嘉君,徐源鸿,应展烽. CH_4和CO_2的水合物沉积物力学特性对比研究. 非常规油气. 2021(05): 1-8 . 百度学术
    14. 王辉,周世琛,陈宇琪,周博,薛世峰. 基于均匀化理论的水合物沉积物修正Duncan-Chang本构模型. 中南大学学报(自然科学版). 2021(09): 3251-3263 . 百度学术
    15. 周家作,韦昌富,魏厚振,杨周洁,李力昕,李彦龙,丁根荣. 多功能水合物沉积物三轴试验系统的研制与应用. 岩土力学. 2020(01): 342-352 . 百度学术
    16. 蔡建超,夏宇轩,徐赛,田海涛. 含水合物沉积物多相渗流特性研究进展. 力学学报. 2020(01): 208-223 . 本站查看
    17. 杨柳,石富坤,张旭辉,鲁晓兵. 含水合物粉质黏土压裂成缝特征实验研究. 力学学报. 2020(01): 224-234 . 本站查看
    18. 袁益龙,许天福,辛欣,夏盈莉,李冰. 海洋天然气水合物降压开采地层井壁力学稳定性分析. 力学学报. 2020(02): 544-555 . 本站查看
    19. 刘林,姚仰平,张旭辉,鲁晓兵,王淑云. 含水合物沉积物的弹塑性本构模型. 力学学报. 2020(02): 556-566 . 本站查看
    20. 李彦龙,刘昌岭,廖华林,董林,卜庆涛,刘志超. 泥质粉砂沉积物—天然气水合物混合体系的力学特性. 天然气工业. 2020(08): 159-168 . 百度学术
    21. 韦昌富,颜荣涛,田慧会,周家作,李文涛,马田田,陈盼. 天然气水合物开采的土力学问题:现状与挑战. 天然气工业. 2020(08): 116-132 . 百度学术
    22. 刘乐乐,刘昌岭,孟庆国,张永超. 分形理论在天然气水合物研究领域的应用. 海洋地质前沿. 2020(09): 11-22 . 百度学术
    23. 王凡,王国荣,钟林,贺湘伟. 围压作用下水合物沉积物单齿破碎数值模拟研究. 中国造船. 2020(04): 245-254 . 百度学术
    24. 王辉,周世琛,周博,薛世峰,林英松,吴海明. 不同破坏准则下水合物沉积物的统计损伤模型. 岩土力学. 2020(12): 4015-4026+4044 . 百度学术
    25. 鲁晓兵,张旭辉,王淑云. 天然气水合物开采相关的安全性研究进展. 中国科学:物理学 力学 天文学. 2019(03): 7-37 . 百度学术
    26. 徐海良,胡文港,杨放琼,孔维阳. 海底天然气水合物绞吸式开采绞刀切削力特性. 计算力学学报. 2019(01): 138-143 . 百度学术
    27. 李栋梁,王哲,吴起,卢静生,梁德青. 天然气水合物储层力学特性研究进展. 新能源进展. 2019(01): 40-49 . 百度学术
    28. 周博,王宏乾,王辉,薛世峰. 水合物沉积物的力学本构模型及参数离散元计算. 应用数学和力学. 2019(04): 375-385 . 百度学术
    29. DONG Lin,LI Yanlong,LIU Changling,LIAO Hualin,CHEN Guoqi,CHEN Qiang,LIU Lele,HU Gaowei. Mechanical Properties of Methane Hydrate-Bearing Interlayered Sediments. Journal of Ocean University of China. 2019(06): 1344-1350 . 必应学术
    30. 刘乐乐,张宏源,刘昌岭,李彦龙,李承峰. 瞬态压力脉冲法及其在松散含水合物沉积物中的应用. 海洋地质与第四纪地质. 2017(05): 159-165 . 百度学术
    31. 张金华,魏伟,肖红平,彭涌,张巧珍. 含水合物沉积物合成方法及其对热、力学性质影响的研究进展. 科学技术与工程. 2017(26): 146-155 . 百度学术
    32. 陈佳艺. 含水合物沉积物屈服强度变化规律. 山东化工. 2017(21): 58-60 . 百度学术

    其他类型引用(19)

计量
  • 文章访问数:  1265
  • HTML全文浏览量:  137
  • PDF下载量:  759
  • 被引次数: 51
出版历程
  • 收稿日期:  2015-11-02
  • 修回日期:  2016-01-13
  • 刊出日期:  2016-05-17

目录

    /

    返回文章
    返回