EI、Scopus 收录
中文核心期刊

高压捕获翼位置设计方法研究

李广利, 崔凯, 肖尧, 徐应洲

李广利, 崔凯, 肖尧, 徐应洲. 高压捕获翼位置设计方法研究[J]. 力学学报, 2016, 48(3): 576-584. DOI: 10.6052/0459-1879-15-391
引用本文: 李广利, 崔凯, 肖尧, 徐应洲. 高压捕获翼位置设计方法研究[J]. 力学学报, 2016, 48(3): 576-584. DOI: 10.6052/0459-1879-15-391
Li Guangli, Cui Kai, Xiao Yao, Xu Yingzhou. THE DESIGN METHOD RESEARCH FOR THE POSITION OF HIGH PRESSURE CAPTURING WING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 576-584. DOI: 10.6052/0459-1879-15-391
Citation: Li Guangli, Cui Kai, Xiao Yao, Xu Yingzhou. THE DESIGN METHOD RESEARCH FOR THE POSITION OF HIGH PRESSURE CAPTURING WING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 576-584. DOI: 10.6052/0459-1879-15-391
李广利, 崔凯, 肖尧, 徐应洲. 高压捕获翼位置设计方法研究[J]. 力学学报, 2016, 48(3): 576-584. CSTR: 32045.14.0459-1879-15-391
引用本文: 李广利, 崔凯, 肖尧, 徐应洲. 高压捕获翼位置设计方法研究[J]. 力学学报, 2016, 48(3): 576-584. CSTR: 32045.14.0459-1879-15-391
Li Guangli, Cui Kai, Xiao Yao, Xu Yingzhou. THE DESIGN METHOD RESEARCH FOR THE POSITION OF HIGH PRESSURE CAPTURING WING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 576-584. CSTR: 32045.14.0459-1879-15-391
Citation: Li Guangli, Cui Kai, Xiao Yao, Xu Yingzhou. THE DESIGN METHOD RESEARCH FOR THE POSITION OF HIGH PRESSURE CAPTURING WING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 576-584. CSTR: 32045.14.0459-1879-15-391

高压捕获翼位置设计方法研究

基金项目: 国家自然科学基金资助项目(11372324,11572333).
详细信息
    通讯作者:

    崔凯,副研究员,主要研究方向:高超声速飞行器构型设计.E-mail:kcui@imech.ac.cn

  • 中图分类号: V19;V221+.3;O354.4

THE DESIGN METHOD RESEARCH FOR THE POSITION OF HIGH PRESSURE CAPTURING WING

  • 摘要: 高压捕获翼构型是一种合理利用机体/上置翼(简称捕获翼)间的耦合关系提高飞行器升力,进而大幅提高升阻比的高速飞行器新概念构型.基于其设计原理,捕获翼的位置与机体压缩激波和自身二次压缩激波的位置均直接相关,一般难以利用理论方法直接获得.针对这一问题,本文运用均匀实验设计方法在设计空间内获取样本点并利用计算流体力学分析和迭代获得其设计位置,之后通过构造代理模型建立捕获翼位置与设计参数间的模拟映射关系,进而发展了一种捕获翼位置设计的有效方法.在方法研究基础上以锥体-捕获翼组合构型作为实例对其进行验证.结果表明,该方法可在较大设计空间范围内准确判定捕获翼的设计位置.此外,针对这一构型还开展了基于代理模型的设计参数单因素分析.发现在设计空间内,前缘压缩角、来流马赫数、和捕获翼钝化半径等3个关键参数均与捕获翼位置呈单调正比例关系.
    Abstract: The high pressure capturing wing configuration is a novel conceptual form which improves lift and lift-todrag ratios by the coupling relationship between the body and HCW. Based on the deign principle, the HCW position is determined by body compression shock and its own compression shock, while it is hard to obtain directly using theory. In order to solve this problem, this paper developed a kind of e ective method to design the position of capturing wing. The method is based on the analysis of parameters which determine the position of capturing wing, combined with the uniform experimental design method, the computational fluid dynamics analysis and surrogate model building to obtain the relationship between the position of capturing wing and the design parameters. The results from the validation case of cone body combination with capturing wing showed that this method can determine the optimal position of capturing wing in a large design space. In addition, cone compression angle, free field Mach number and blunted radius of capturing wing are the key parameters a ecting the position of capturing wing for the cone combination capturing wing. The results from the analysis of surrogate model showed that the position of capturing wing is in monotonic proportional relationship among the above three parameters.
  • 1 Kuchemann D. The Aerodynamic Design of Aircraft. Oxford: Pergamon Press, 1978
    2 叶友达. 近空间高速飞行器气动特性研究与构型设计优化. 力学进展, 2009, 39(6): 683-694 (Ye Youda. Study on aerodynamic characteristic and design of optimization for high speed near space vehicles. Advances in Mechanics, 2009, 39(6): 683-694 (in Chi584 力学学报2016 年第48 卷 nese))
    3 Sullivan RB, Winters B. X-34 program overview. AIAA Paper1998-3516, 1998
    4 Jazra T, Preller D, Smart MK. Design of an airbreathing second stage for a rocket-scramjet-rocket launch vehicle. Journal of Spacecraft and Rockets, 2013, 50(2): 411-422
    5 Walker S, Sherk J, Shell D, et al. The DARPA/AF falcon program: The hypersonic technology vehicle #2 (HTV-2) flight demonstration phase. AIAA Paper 2008-2539, 2008
    6 Walker S, Tang M, Mamplata C. TBCC propulsion for a mach 6 hypersonic airplane. AIAA Paper 2009-7238, 2009
    7 Nonweiler TRF. Delta wings of shapes amenable to exact shockwave theory. Journal of the Royal Aeronautical Society, 1963, 67:39-40
    8 Bowcutt KG, Anderson JD, Capriotti D. Viscous optimized hypersonic waveriders. AIAA Paper 1987-0272, 1987
    9 Corda S, Anderson JD. Viscous optimized hypersonic waveriders designed from axisymmertirc flow fields. AIAA-88-0396, 1988
    10 Rodi PE. Integration of optimized leading edge geometries onto waverider configurations. AIAA 2015-1700, 2015
    11 Liu J, Ding F, HuangW, et al. Novel approach for designing a hypersonic gliding-cruising dual waverider vehicle. Acta Astronautica,2014, 102: 81-88
    12 Lobbia M. Optimization of waverider-derived crew reentry vehicles using a rapid aerodynamics analysis approach. AIAA Paper 2015-0757, 2015
    13 Cui K, Yang GW. Waverider configurations derived from general conical flowfields. Acta Mechanica Sinica, 2007, 23(3): 247-255
    14 Cui K, YangGW. The effect of conical flowfields on the performance of waveriders at Mach 6. Chinese Science Bulletin, 2007, 52(1): 51-64
    15 Liu J, Hou Z, Ding G, et al. Numerical and experimental study on waverider with blunt leading edge. Computers & Fluids, 2013, 84:203-217
    16 Santos WFN. Leading edge thickness impact on drag and lift in hypersonic wedge flow. AIAA Paper 2007-615, 2007
    17 Lobbia M, Suzuki K. Experimental investigation of a mach 3.5 waverider designed using computational fluid dynamics. AIAA Journal,2014, 53(6): 1590-1601
    18 崔凯,杨国伟. 6 马赫锥体流场对乘波体性能的影响及规律. 科学通报, 2006, 57(24): 2830-2837 (Cui Kai, Yang Guowei. The waverider performance affected by Mach 6 conical flow. Chinese Science Bulletin, 2006, 57(24): 2830-2837 (in Chinese))
    19 张锋涛, 崔凯, 杨国伟等. 基于神经网络技术的乘波体优化设计. 力学学报, 2009, 41(3): 418-424 (Zhang Fengtao, Cui Kai, Yang Guowei, et al. Optimization design of waverider based on the artificial neural networks. Chinese Jounal of Theoretical and Applied Mechanics, 2009, 41(3): 418-424 (in Chinese))
    20 Li Y, An P, Pan C, et al. Integration methodology for waveriderderived hypersonic inlet and vehicle forebody. AIAA Paper 2014-3229, 2014
    21 Ding F, Liu J, Shen C, et al. Novel inlet-airframe integration methodology for hypersonic waverider vehicles. Acta Astronautica,2015, 111: 178-197
    22 Cui K, Hu SC, Li GL, et al. Conceptual design and aerodynamic evaluation of hypersonic airplane with double flanking air inlets. Science China Technological Sciences, 2013, 56(8): 1980-1988
    23 He XZ, Le JL, Zhou Z, et al. Progress in waverider inlet integration study. AIAA Paper 2015-3685, 2015
    24 Liu J, Hou Z, Chen X, et al. Experimental and numerical study on the aero-heating characteristics of blunted waverider. Applied Thermal Engineering, 2013, 51(1): 301-314
    25 Kanderpalli N, Selvaraj S, Gopalan J, et al. Heat transfer measurements on waverider at hypersonic mach numbers. AIAA Paper 2014-2507, 2014
    26 Lobbia M, Suzuki K. Numerical investigation of waverider-derived hypersonic transport configurations. AIAA Paper 2003-3804, 2003
    27 Lobbia M, Suzuki K. Multidisciplinary design optimization of hypersonic transport configurations using waveriders. AIAA Paper 2014-2359, 2014
    28 樊菁. 离心力和滑翔距离对于高超声速巡航飞行性能的影响. 力学学报, 2011, 43(2): 249-254 (Fan Jing. Effects of centrifugal force and glide distance on the flight performance of HCV. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(2): 249-254 (in Chinese))
    29 高太元, 崔凯, 胡守超等. 高超声速飞行器上壁面多目标优化及性能分析. 力学学报, 2013, 45(2): 193-201 (Gao Taiyuan, Cui Kai, Hu Shouchao, et al. Multi-objective optimization and aerodynamic performance analysis of the upper surface for hypersonic vehicles. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2):193-201 (in Chinese))
    30 崔凯, 胡守超, 李广利等. 尖/钝化前缘乘波体压缩面优化分析. CSTAM 2012-B03-0305 (Cui Kai, Hu Shouchao, Li Guangli, et al. Optimization and analysis of waverider compression surface with sharp or blunted leading edges. CSTAM 2012-B03-0305)
    31 崔凯, 李广利, 胡守超等.高速飞行器高压捕获翼气动布局概念研究.中国科学: 物理学力学天文学,2013,43(5): 652-661 (Cui Kai, Li Guangli, Hu Shouchao, et al. Conceptual studies of the high pressure zone capture wing configuration for high speed air vehicles. Sci Sin-Phys Mech Astron, 2013, 43(5): 652-661 (in Chinese))
    32 Cui K, Li GL, Xiao Y. Aerodynamic performance study of high pressure capturing wing configuration. AIAA Paper 2015-3388, 2015
    33 Ladson CL, Blackstock TA. Air-helium simulation of the aerodynamic force coefficients of cones at hypersonic speeds. NASA TN D-1473, 1962
    34 Singh DJ, Tiwari SN, Kumar A. Effect of nose bluntness on flowfield over slender bodies in hypersonic flows. Journal of Thermophysics and Heat Transfer, 1991, 5(2): 166-171
  • 期刊类型引用(9)

    1. 王浩祥,肖尧,张凯凯,李广利,常思源,田中伟,崔凯. 机体尾缘形状对高压捕获翼构型亚声速特性影响. 航空学报. 2023(06): 174-190 . 百度学术
    2. 常思源,肖尧,李广利,田中伟,张凯凯,崔凯. 翼反角对高压捕获翼构型高超气动特性的影响. 航空学报. 2023(08): 45-58 . 百度学术
    3. 肖尧,崔凯,李广利,田中伟,常思源. 高压捕获翼双翼构型宽速域气动性能研究. 气体物理. 2023(05): 54-60 . 百度学术
    4. 常思源,肖尧,李广利,田中伟,崔凯. 翼反角对高压捕获翼构型亚声速气动特性影响分析研究. 力学学报. 2022(10): 2760-2772 . 本站查看
    5. 田鹏,李广利,崔凯,李志辉,张俊. 高压捕获翼构型的跨流域气动特性. 空气动力学学报. 2021(03): 11-20 . 百度学术
    6. 王浩祥,李广利,杨靖,肖尧,王小永,徐应洲,许先贵,崔凯. 高压捕获翼构型亚跨超流动特性数值研究. 力学学报. 2021(11): 3056-3070 . 本站查看
    7. 王浩祥,李广利,徐应洲,崔凯. 高压捕获翼构型跨声速流动特性初步研究. 空气动力学学报. 2020(03): 441-447 . 百度学术
    8. 刘荣健,白鹏. 基于超声速有益干扰原理的气动构型概念综述. 航空学报. 2020(09): 18-31 . 百度学术
    9. 李广利,崔凯,肖尧,徐应洲. 高压捕获翼前缘型线优化和分析. 力学学报. 2016(04): 877-885 . 本站查看

    其他类型引用(0)

计量
  • 文章访问数:  969
  • HTML全文浏览量:  88
  • PDF下载量:  580
  • 被引次数: 9
出版历程
  • 收稿日期:  2015-10-26
  • 修回日期:  2015-11-22
  • 刊出日期:  2016-05-17

目录

    /

    返回文章
    返回