EI、Scopus 收录
中文核心期刊

颗粒介质固-流态转变的理论分析及实验研究

费明龙, 徐小蓉, 孙其诚, 周公旦, 金峰

费明龙, 徐小蓉, 孙其诚, 周公旦, 金峰. 颗粒介质固-流态转变的理论分析及实验研究[J]. 力学学报, 2016, 48(1): 48-55. DOI: 10.6052/0459-1879-15-290
引用本文: 费明龙, 徐小蓉, 孙其诚, 周公旦, 金峰. 颗粒介质固-流态转变的理论分析及实验研究[J]. 力学学报, 2016, 48(1): 48-55. DOI: 10.6052/0459-1879-15-290
Fei Minglong, Xu Xiaorong, Sun Qicheng, Zhou Gordon G D, Jin Feng. STUDIES ON THE TRANSITION BETWEEN SOLID- AND FLUID-LIKE STATES OF GRANULAR MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 48-55. DOI: 10.6052/0459-1879-15-290
Citation: Fei Minglong, Xu Xiaorong, Sun Qicheng, Zhou Gordon G D, Jin Feng. STUDIES ON THE TRANSITION BETWEEN SOLID- AND FLUID-LIKE STATES OF GRANULAR MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 48-55. DOI: 10.6052/0459-1879-15-290
费明龙, 徐小蓉, 孙其诚, 周公旦, 金峰. 颗粒介质固-流态转变的理论分析及实验研究[J]. 力学学报, 2016, 48(1): 48-55. CSTR: 32045.14.0459-1879-15-290
引用本文: 费明龙, 徐小蓉, 孙其诚, 周公旦, 金峰. 颗粒介质固-流态转变的理论分析及实验研究[J]. 力学学报, 2016, 48(1): 48-55. CSTR: 32045.14.0459-1879-15-290
Fei Minglong, Xu Xiaorong, Sun Qicheng, Zhou Gordon G D, Jin Feng. STUDIES ON THE TRANSITION BETWEEN SOLID- AND FLUID-LIKE STATES OF GRANULAR MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 48-55. CSTR: 32045.14.0459-1879-15-290
Citation: Fei Minglong, Xu Xiaorong, Sun Qicheng, Zhou Gordon G D, Jin Feng. STUDIES ON THE TRANSITION BETWEEN SOLID- AND FLUID-LIKE STATES OF GRANULAR MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 48-55. CSTR: 32045.14.0459-1879-15-290

颗粒介质固-流态转变的理论分析及实验研究

基金项目: 国家自然科学基金项目(11272048,51239006),欧盟MarieCurie国际项目(IRSES-294976),美国全球创新计划(GlobalInnovationInitiative)和清华大学自主科研计划资助.
详细信息
    通讯作者:

    孙其诚,副研究员,主要研究方向:颗粒介质本构理论及应用.E-mail:qcsun@tsinghua.edu.cn

  • 中图分类号: O414.14

STUDIES ON THE TRANSITION BETWEEN SOLID- AND FLUID-LIKE STATES OF GRANULAR MATERIALS

  • 摘要: 颗粒介质由大量离散的颗粒聚集而成,因而与传统固体和流体不同,运动过程中的颗粒介质中可能同时存在多种流态及其相互间复杂的转换过程. 颗粒介质弹性失稳机理、不可恢复应变量化是研究颗粒介质固态和流态及固-流态转变的关键. 在前期建立的双颗粒温度热力学(two-granular-temperature, TGT) 理论基础上,确定了颗粒介质的弹性稳定性条件,建立了不可恢复应变流动法则,搭建了描述颗粒固态-液态及其相互转化的简单模型. 颗粒堆积体坍塌过程是典型的颗粒介质固态和流态及其转变过程,因此本文首先开展了25 167 个陶颗粒堆积体坍塌过程的实验研究,并使用基于TGT 理论的物质点方法和离散元方法对物理实验进行了模拟. 结果表明,模型数值结果与物理实验在颗粒堆坍塌过程中的形态、速度分布等细节上吻合很好,同时也发现了现阶段所使用的物质点方法和TGT 理论的不足. 初步说明TGT 理论可以实现颗粒介质固态和流态,以及状态转变的描述.
    Abstract: Not like the traditional fluid or solid, granular media is a combination of large amounts of discrete particles, which may lead to the coexistence of di erent flow regimes and their complex transitions between each other in granular media during its movement. Elastic instability and irreversible flow rule are the keys to understand the mechanical behaviours of granular solid and granular fluid, and especially the phase transition from granular solid to granular fluid. In this paper, we deduced the instable critical condition for instant elastic energy based on the two-granular-temperature thermodynamics (TGT) for granular media, and developed a related irreversible flow rule, with a MPM numerical model we built and used it to simulate a sandpile collapsing, which is a typical transition process between granular solid and granular fluid. Physical experiment and DEM simulation were carried out for comparison, and both numerical results can march well with those from the experiment. We also found out some disadvantages for TGT model and MPM. In this work, the sand dam developed from static compression to irreversible flow after failure, then finally deposited again, and the TGT model and MPM shows the capacity of describing the solid- and fluid-like behaviour, and the phase transition of granular media well during the sandpile collapse.
  • 1 Forterre Y, Pouliquen O. Flows of dense granular media. Annual Review of Fluid Mechanics, 2008, 40(1): 1-24
    2 Jop P. Rheological properties of dense granular flows. Comptes Rendus Physique, 2015, 16(1): 62-72
    3 Midi GDR. On dense granular flows. The European Physical Journal E, 2004, 14(4): 341-365
    4 Jop P, Forterre Y, Pouliquen O. A constitutive law for dense granular flows. Nature, 2006, 441(7094): 727-730
    5 Delannay R, Louge M, Richard P, et al. Towards a theoretical picture of dense granular flows down inclines. Nature Materials, 2007,6: 99-108
    6 Kamrin K. Nonlinear elasto-plastic model for dense granular flow. International Journal of Plasticity, 2010, 26(2): 167-188
    7 Zheng H, Peng Z, Fu L, et al. Expression for the granular elastic energy. Physical Review E, 2012, 85: 051304
    8 Sun Q, Jin F, Wang G, et al. On granular elasticity. Scientific Reports,2015, 5: 9652
    9 Collins IF, Houlsby GT. Application of thermomechanical principles to the modelling of geotechnical materials. Proceeding of Royal Society A, 1997, 453: 1975-2001
    10 Houlsby GT, Puzrin AM. Principles of Hyperplasticity: An Approach to Plasticity Theory Based on Thermodynamic Principles. Springer Science & Business Media, 2007
    11 Jiang Y, Liu M. Granular elasticity without the Coulomb condition. Physical Review Letters, 2003, 91(14): 144301
    12 Jiang Y, Liu M. From elasticity to hypoplasticity: dynamics of granular solids. Physical Review Letters, 2007, 99(10): 105501
    13 Jiang Y, Liu M. Granular solid hydrodynamics. Granular Matter,2009, 11(3): 139-156
    14 Jiang Y, Liu M. Applying GSH to a wide range of experiments in granular media. The European Physical Journal E, 2015, 38(3): 1-27
    15 孙其诚. 颗粒介质的结构与热力学. 物理学报, 2015, 64 (7):076101 (Sun Qicheng. Grnaualr structure and non-equlinrium thermodyanmcis. Acta Physica Sinica, 2015, 64 (7): 076101 (in Chinese))
    16 Kerswell RR, Lacaze L. Axisymmetric granular collapse: A transient 3D flow test of viscoplasticity. Physical Review Letters, 2009,102(10): 108305
    17 Lagree P, Staron L, Popinet S. The granular column collapse as a continuum: validity of a two-dimensional Navier-Stokes model with a (I)-rheology. Journal of Fluid Mechanics, 2011, 686: 378-408
    18 Liu AJ, Nagel SR. Nonlinear dynamics: Jamming is not just cool any more. Nature, 1998, 396(6706): 21-22
    19 Trappe V, Prasad V, Cipelletti L, et al. Jamming phase diagram for attractive particles. Nature, 2001, 411(6839): 772-775
    20 Bi D, Zhang J, Chakraborty B, et al. Jamming by shear. Nature,2011, 480(7377): 355-358
    21 Drucker DC. A more fundamental approach to plastic stress-strain relations. ASME-AMER Soc Mechanical Eng 345 E 47TH ST, New York, NY 10017, 1951
    22 Drucker DC, Prager W. Soil mechanics and plastic analysis or limit design. Quarterly of Applied Mathematics, 1952, 10: 157-165
    23 张雄, 廉艳平, 刘岩等. 物物质点法. 清华大学出版社, 2013 (Zhang Xiong, Lian Yanping, Liu Yan, et al. Material Point Method. Tsinghua University Press, 2013 (in Chinese))
    24 Jenkins J. Dense shearing flows of inelastic disks. Physics of Fluids,2006, 18(10): 103307
    25 孙其诚, 厚美瑛, 金峰. 颗粒介质物理与力学. 北京: 科学出版社,2011 (Sun Qicheng, Hou Meiying, Jin Feng. Physics and Mechanics of Granular Materials. Beijing: Science Press, 2011 (in Chinese))
    26 Kozicki J, Donze FV. YADE-OPEN DEM: an open-source software using a discrete element method to simulate granular material. Engineering Computations, 2009, (26): 786-805
    27 Antypov D, Elliott JA. On an analytical solution for the damped Hertzian spring. Europhysics Letters, 2011, 94(5): 50004
    28 Rycroft CH, Kamrin K, Bazant MZ. Assessing continuum postulates in simulations of granular flow. Journal of the Mechanics and Physics of Solids, 2009, 57(5): 828-839
  • 期刊类型引用(11)

    1. 赵晓康,张凯,裴建中,张久鹏,计杰. 基于Jamming转变理论的沥青路面车辙演化机制. 哈尔滨工业大学学报. 2024(09): 150-160 . 百度学术
    2. 裴建中,樊泽鹏,薛斌,王鹏志,辛寄语. 沥青路面材料的颗粒物质视域:理论、方法与进展. 中国公路学报. 2023(08): 121-136 . 百度学术
    3. 孟凡净,刘华博,花少震. 颗粒间摩擦对颗粒流润滑影响的力学机制. 工程力学. 2021(04): 221-229+246 . 百度学术
    4. 来志强,江恩慧,赵连军,周伟,田文祥,马刚. 颗粒柱坍塌运动与堆积特性的研究综述. 上海交通大学学报. 2021(04): 421-433 . 百度学术
    5. 景路,郭颂怡,赵涛. 基于流体动力学-离散单元耦合算法的海底滑坡动力学分析. 岩土力学. 2019(01): 388-394 . 百度学术
    6. 孙倩,彭天骥,严安,周志伟. 密集颗粒流动的连续性方法应用研究. 原子能科学技术. 2019(12): 2367-2374 . 百度学术
    7. 王润泽,毛富志,房翔,黄志来,王彪. 吸收塔中活性焦颗粒的等效连续介质模型分析. 黑龙江工业学院学报(综合版). 2019(12): 84-89 . 百度学术
    8. 杨晖,张国华,王宇杰,孙其诚. 密集颗粒体系的颗粒运动及结构测量技术. 力学进展. 2018(00): 541-590 . 百度学术
    9. 钱劲松,陈康为,张磊. 粒料固有各向异性的离散元模拟与细观分析. 力学学报. 2018(05): 1041-1050 . 本站查看
    10. 陈荣前,聂德明. 椭圆颗粒在剪切流中旋转特性的数值研究. 力学学报. 2017(02): 257-267 . 本站查看
    11. 李中华,李志辉,陈爱国,吴俊林. 低密度风洞瑞利散射测速实验中纳米粒子跟随性数值分析. 力学学报. 2017(06): 1243-1251 . 本站查看

    其他类型引用(11)

计量
  • 文章访问数:  1443
  • HTML全文浏览量:  140
  • PDF下载量:  935
  • 被引次数: 22
出版历程
  • 收稿日期:  2015-07-29
  • 修回日期:  2015-08-23
  • 刊出日期:  2016-01-17

目录

    /

    返回文章
    返回