EI、Scopus 收录
中文核心期刊

页岩储层体积压裂的地应力变化研究

张广明, 刘勇, 刘建东, 包劲青, 金娟, 程威, 张毅

张广明, 刘勇, 刘建东, 包劲青, 金娟, 程威, 张毅. 页岩储层体积压裂的地应力变化研究[J]. 力学学报, 2015, 47(6): 965-972. DOI: 10.6052/0459-1879-15-274
引用本文: 张广明, 刘勇, 刘建东, 包劲青, 金娟, 程威, 张毅. 页岩储层体积压裂的地应力变化研究[J]. 力学学报, 2015, 47(6): 965-972. DOI: 10.6052/0459-1879-15-274
Zhang Guangming, Liu Yong, Liu Ji, ong, Bao Jinqing, Jin Juan, Cheng Wei. RESEARCH ON THE GEOSTRESS CHANGE OF SHALE RESERVOIR VOLUME FRACTURING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 965-972. DOI: 10.6052/0459-1879-15-274
Citation: Zhang Guangming, Liu Yong, Liu Ji, ong, Bao Jinqing, Jin Juan, Cheng Wei. RESEARCH ON THE GEOSTRESS CHANGE OF SHALE RESERVOIR VOLUME FRACTURING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 965-972. DOI: 10.6052/0459-1879-15-274
张广明, 刘勇, 刘建东, 包劲青, 金娟, 程威, 张毅. 页岩储层体积压裂的地应力变化研究[J]. 力学学报, 2015, 47(6): 965-972. CSTR: 32045.14.0459-1879-15-274
引用本文: 张广明, 刘勇, 刘建东, 包劲青, 金娟, 程威, 张毅. 页岩储层体积压裂的地应力变化研究[J]. 力学学报, 2015, 47(6): 965-972. CSTR: 32045.14.0459-1879-15-274
Zhang Guangming, Liu Yong, Liu Ji, ong, Bao Jinqing, Jin Juan, Cheng Wei. RESEARCH ON THE GEOSTRESS CHANGE OF SHALE RESERVOIR VOLUME FRACTURING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 965-972. CSTR: 32045.14.0459-1879-15-274
Citation: Zhang Guangming, Liu Yong, Liu Ji, ong, Bao Jinqing, Jin Juan, Cheng Wei. RESEARCH ON THE GEOSTRESS CHANGE OF SHALE RESERVOIR VOLUME FRACTURING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 965-972. CSTR: 32045.14.0459-1879-15-274

页岩储层体积压裂的地应力变化研究

基金项目: 国家自然科学基金资助项目(51274237).
详细信息
    通讯作者:

    张广明,博士,主要研究方向:地质力学和水力压裂.E-mail:gmzhang@petrochina.com.cn

  • 中图分类号: TE357.1

RESEARCH ON THE GEOSTRESS CHANGE OF SHALE RESERVOIR VOLUME FRACTURING

Funds: The project was supported by the National Natural Science Foundation of China (51274237).
  • 摘要: 页岩储层属于致密超低渗透储层,需改造形成复杂缝网才有经济产能.体积压裂是页岩储层增产改造的主要措施,而地应力场特别是水平主应力差值是体积压裂的关键控制因素. 理论研究表明:(1)当初始两向水平主应力差较小时,容易形成缝网,反之不易产生缝网;(2)人工裂缝的形成能够改变地层初始应力场. 因此应在前人研究的基础上优化设计压裂方式,以克服和翻转初始水平主应力差值,产生体积缝网.基于此,建立了页岩气藏水平井体积压裂数值模型,模型中采用多孔介质流固耦合单元模拟页岩基质的行为,采用带有孔压的"cohesive"单元描述水力裂缝的性质,模型对"Texas Two-Step" 压裂方法进行了数值模拟,模拟结果得到了压裂过程中地层应力场的分布及其变化,模拟结果和解析公式计算结果吻合良好.模拟结果表明:(1)裂缝的产生减弱了地层应力场的各向异性;(2 对于低水平应力差页岩储层,采用"Texas Two-Step"压裂方法可以产生缝网. 对于采用"Texas Two-Step"压裂方法无法产生缝网的高应力差页岩储层,提出了三次应力"共振" 和四次应力"共振" 压裂方法并进行了数值模拟,模拟结果得到了压裂过程中页岩储层应力场的分布及其变化,得到了缝网形成的区域,模拟结果表明:(1)对于高应力差页岩储层,采用"Texas Two-Step" 压裂方法无法产生缝网;(2)对于高应力差页岩储层,三次应力"共振" 和四次应力"共振"压裂方法是有效的体积压裂缝网形成的方法.
    Abstract: Shale reservoirs have ultra-low porosity and permeability. Without creating complex fracture network, there will be no economical production. Volume fracturing is the primary treatment for shale reservoirs stimulation. The geostress and the di erential stress between the two horizontal principal stresses control the creation of fracture networks. Previous researches have shown that: (1) The small di erential stress between the two horizontal principal stresses eases the development of fracture network and vice versa; (2) The reservoirs geostress can be changed by the creation of hydraulic fractures. The numerical model about volume fracturing in shale gas reservoirs was constructed in which the pore pressure elements were used to simulate the behavior of porous media and the pore pressure cohesive elements were adopted to catch the characters of hydraulic fractures. The Texas Two-Step fracturing method was simulated in the model. The reservoirs stress distribution and change during the process of fracturing were obtained. The simulation results and the theoretical calculation are fit very well. The results of the simulation show that: (1) The generation of the hydraulic fractures reduces the stresses anisotropy; (2) The complex fracture networks could be created by means of the Texas Two-Step fracturing method. For the situation that the initial difference of the two horizontal principal stresses is large and the fracture networks could not be created by adopting the Texas Two-Step fracturing method, the triple and quartic stress "resonance" fracturing model were proposed. The reservoirs stress distribution and change during the process of fracturing were obtained. The area of fracture network was marked. The simulation results show that the triple and quartic stress "resonance" fracturing methods are e ective methods for the high stresses difference shale gas reservoirs.
  • Arthur JD, Bohm B, Layne M. Evaluating implications of hydraulic fracturing in shale gas reservoirs. SPE 121038, 2009
    Akbarnejad-Nesheli B, Valko PP, Lee WJ. Relating fracture network characteristics to shale gas reserve estimation. SPE 154841, 2012
    Warpinski NR, Branagm PT. Altered-stress fracturing. SPE 17533, 1989
    Soliman MY, East L, Adams D. Geomechnics aspects of multiple fracturing of horizontal and vertical wells. SPE 86992, 2004
    Cheng Y. Impacts of the number of perforation clusters and cluster spacing on production performance of horizontal shale gas wells. SPE 138843, 2010
    Cheng Y. Boundary element analysis of the stress distribution around multiple fractures: implications for the spacing of perforation clusters of hydraulically fractured horizontal wells. SPE 125769, 2009
    Wikel K. Geomechanics: bridging the gap from geophysics to engineering in unconventional reservoirs. First Break, 2011, 29: 71-81
    Wu R, Kresse O, Weng X, et al. Modeling of interaction of hydraulic fractures in complex fracture networks. SPE 152052, 2012
    Wu K, Olson JE. Investigation of critical in situ and injection factors in multi-frac treatments: guidelines for controlling fracture complexity. SPE 163821, 2013
    Stanojcic M, Rispler K. How to achieve and control branch fracturing for unconventional reservoirs: two novel multistage-stimulation processes. SPE 136566, 2010
    Roussel NP, Sharma MM. Optimizing fracture spacing and sequencing in horizontal well fracturing. SPE 127986, 2010
    Roussel NP, Sharma MM. Quantifying transient effects in altered-stress refracturing of vertical wells. SPE 119522, 2009
    Jo H, Hughes B. Optimizing fracture spacing to induce complex fractures in a hydraulically fractured horizontal wellbore. SPE 154930, 2012
    Barree RD, Gilbert JV, Conway MW. Stress and rock property profiling for unconventional reservoir stimulation. SPE 118703, 2009
    Nagel N, Zhang F, Sanchez-Nagel M, et al. Stress shadow evaluation for completion design in unconventional plays. SPE 167128, 2013
    Soliman MY, Augustine J. Fracturing design aimed at enhancing fracture complexity. SPE 130043, 2010
    Roussel NP, Sharma MM. Strategies to minimize frac spacing and stimulate natural fractures in horizontal completions. SPE 146104, 2011
    雷群,胥云,蒋廷学 等.用于提高低-特低渗透油气藏改造效果的缝网压裂技术.石油学报,2009,30(2):237-241 (Lei Qun, Xu Yun, Jiang Tingxue, et al."Fracture network" fracturing technique for improving post-fracturing performance of low and ultra-low permeability reservoir. Acta Petrolei Sinica, 2009, 30(2): 237-241 (in Chinese))
    陈作,薛承瑾,蒋廷学 等.页岩气井体积压裂技术在我国的应用建议.天然气工业,2010,30(10):30-32 (Chen Zuo, Xue Chengjin, Jiang Tingxue, et al. Proposals for the application of fracturing by stimulated reservoir volume (SRV) in shale gas wells in China. Natural Gas Industry, 2010, 30(10): 30-32 (in Chinese))
    翁定为,雷群,胥云 等.缝网压裂技术及其现场应用.石油学报,2011,32(2):280-284 (Weng Dingwei, Lei Qun, Xu Yun, et al. Network fracturing techniques and its application in the field. Acta Petrolei Sinica, 2011, 32(2): 280-284 (in Chinese))
    Romanson R, East L, Stanojcic M. Novel, multistage stimulation processes can help achieve and control branch fracturing and increase stimulated reservoir volume for unconventional reservoirs. SPE 142959, 2011
    Mayerhofer MJ, Lolon EP, Warpinski NR, et al. What is stimulated reservoir volume (SRV)? SPE 119890, 2008
    Gong B, Qin G, Douglas C, et al. Detailed modeling of the complex fracture network of shale gas reservoirs. SPE 142705, 2011
    Meyer BR, Bazan LW. A discrete fracture network model for hydraulic induced fractures: theory, parametric and case studies. SPE 140514, 2011
    Weng X, Kresse O, Cohen C, et al. Modeling of hydraulic fracture network propagation in a naturally fractured formation. SPE 140253, 2011
    Bunger AP, Zhang X, Jeffrey RG. Parameters effecting the interaction among closely spaced hydraulic fractures. SPE 140426, 2011
    吴奇,胥云,王晓泉 等.非常规油气藏体积改造技术-内涵、优化设计与实现.石油勘探与开发,2012, 39(3):352-358 (Wu Qi, Xu Yun, Wang Xiaoquan, et al. Volume fracturing technology of unconventional reservoirs: connotation, optimization design and implementation. Petroleum Exploration and Development, 2012, 39(3): 352-358 (in Chinese))
    Sneddon IN. The distribution of stress in the neighbourhood of a crack in an elastic solid. Proc. R. Soc. London, Series A, 1946, 187: 229-260
    Sneddon IN, Elliott HA. The opening of a Griffith crack under internal pressure. Quart Appl Math, 1946, IV, 3: 262-267
    East L, Soliman MY, Augustine J. Methods for enhancing far-field complexity in fracturing operations. SPE 133380, 2010
    张广明.页岩气藏水平井体积压裂缝网形成的力学条件研究.中国石油勘探开发研究院博士后研究报告,北京,2012 (Zhang Guangming. Research on the mechanical condition of fracture networks for horizontal well volume fracturing in shale reservoirs. Post-doctor Report, Research Institute of Petroleum Exploration & Development, PetroChina, Beijing, 2012 (in Chinese))
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-22
  • 修回日期:  2015-10-08
  • 刊出日期:  2015-11-17

目录

    /

    返回文章
    返回