EI、Scopus 收录
中文核心期刊

切塔耶夫型非完整系统的广义梯度表示

陈向炜, 曹秋鹏, 梅凤翔

陈向炜, 曹秋鹏, 梅凤翔. 切塔耶夫型非完整系统的广义梯度表示[J]. 力学学报, 2016, 48(3): 684-691. DOI: 10.6052/0459-1879-15-268
引用本文: 陈向炜, 曹秋鹏, 梅凤翔. 切塔耶夫型非完整系统的广义梯度表示[J]. 力学学报, 2016, 48(3): 684-691. DOI: 10.6052/0459-1879-15-268
Chen Xiangwei, Cao Qiupeng, Mei Fengxiang. GENERALIZED GRADIENT REPRESENTATION OF NONHOLONOMIC SYSTEM OF CHETAEV'S TYPE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 684-691. DOI: 10.6052/0459-1879-15-268
Citation: Chen Xiangwei, Cao Qiupeng, Mei Fengxiang. GENERALIZED GRADIENT REPRESENTATION OF NONHOLONOMIC SYSTEM OF CHETAEV'S TYPE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 684-691. DOI: 10.6052/0459-1879-15-268
陈向炜, 曹秋鹏, 梅凤翔. 切塔耶夫型非完整系统的广义梯度表示[J]. 力学学报, 2016, 48(3): 684-691. CSTR: 32045.14.0459-1879-15-268
引用本文: 陈向炜, 曹秋鹏, 梅凤翔. 切塔耶夫型非完整系统的广义梯度表示[J]. 力学学报, 2016, 48(3): 684-691. CSTR: 32045.14.0459-1879-15-268
Chen Xiangwei, Cao Qiupeng, Mei Fengxiang. GENERALIZED GRADIENT REPRESENTATION OF NONHOLONOMIC SYSTEM OF CHETAEV'S TYPE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 684-691. CSTR: 32045.14.0459-1879-15-268
Citation: Chen Xiangwei, Cao Qiupeng, Mei Fengxiang. GENERALIZED GRADIENT REPRESENTATION OF NONHOLONOMIC SYSTEM OF CHETAEV'S TYPE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 684-691. CSTR: 32045.14.0459-1879-15-268

切塔耶夫型非完整系统的广义梯度表示

基金项目: 国家自然科学基金资助项目(11372169,10932002,11272050).
详细信息
    通讯作者:

    陈向炜,教授,主要研究方向:分析力学.E-mail:hnchenxw@163.com

  • 中图分类号: O316

GENERALIZED GRADIENT REPRESENTATION OF NONHOLONOMIC SYSTEM OF CHETAEV'S TYPE

  • 摘要: 非定常非完整力学系统的稳定性研究是重要而又困难的问题,直接从微分方程出发来构造李雅普诺夫函数往往很难实现.本文给出了一种间接方法.提出了10类广义梯度系统的定义,并分别给出了10类广义梯度系统的微分方程.进一步研究一般切塔耶夫型非完整系统的广义梯度表示,给出该系统分别成为这10类广义梯度系统的条件,从而将切塔耶夫型非完整系统化成各类广义梯度系统.最后利用广义梯度系统的性质来研究切塔耶夫型非完整系统零解的稳定性.这种方法在直接构造李雅普诺夫函数发生困难时,显得更为有效.举例说明结果的应用.
    Abstract: It is an important and di cult problem to study the stability of the non-steady and nonholonomic mechanical systems, and it is di cult to construct the Lyapunov function directly from the di erential equation. This paper gives an indirect method. The ten kinds of generalized gradient systems are proposed and the di erential equations of the ten kinds of generalized gradient systems are given respectively. Furthermore, the generalized gradient representations of a nonholonomic system of Chetaev's type are studied. The condition under which a nonholonomic system can be considered as a generalized gradient system is obtained, so the nonholonomic system of Chetaev's type is transformed into each generalized gradient systems. The characteristic of the generalized gradient systems can be used to study the stability of the nonholonomic system. This method appears to be more e ective when it is di cult to construct the Lyapunov function directly. Some examples are given to illustrate the application of the result.
  • 1 Hertz HR. Die Prinzipien der Mechanik. Leibzing: Gesammelte Werke, 1894
    2 牛青萍. 经典力学基本微分原理与不完整力学组的运动方程. 力学学报, 1964, 7(2): 139-148 (Niu Qingping. The fundamental differential principle of classical mechanics and the equations of motion of nonholonomic systems. Acta Mechanica Sinica, 1964, 7(2):139-148 (in Chinese))
    3 Mei FX. Nonholonomic mechanics. ASME Appl Mech Rev, 2000,53: 283-305
    4 李子平. 经典和量子约束系统及其对称性质. 北京: 北京工业大学出版社, 1993 (Li Ziping. Classical and Quantum Constrained Systems and Their Symmetries. Beijing: Beijing University of Technology Press, 1993 (in Chinese))
    5 Luo SK. Relativistic variational principles and equations of motion of high-order nonlinear nonholonomic systems. In: Proceedings of the International Conference on Dynamics, Vibration and Control, Beijing: Peking University Press, 1990, 645-652
    6 Fu JL, Chen LQ, Luo Y, et al. Stability for the equilibrium state manifold of relativistic Birkhoff systems. Chinese Physics, 2003,12: 351-356
    7 Zhang Y. Integrating factors and conservation laws for relativistic mechanical system. Communications in Theoretical Physics, 2005,44: 231-234
    8 刘延柱. 航天器姿态动力学. 北京: 国防工业出版社, 1995 (Liu Yanzhu. Spacecraft Attitude Dynamics. Beijing: National Defense Industry Press, 1995 (in Chinese))
    9 Ostrovskaya S, Angels J. Nonholonomic systems revisited within the frame work of analytical mechanics. ASME Appl Mech Rev,1998, 51: 415-433
    10 Papastavridis JG. A panoramic overview of the principles and equations of motion of advanced engineering dynamics. ASME Appl Mech Rev, 1998, 51: 239-265
    11 Han YL, Wang XX, Zhang ML, et al. Special Lie symmetry and Hojman conserved quantity of Appell equations for a Chetaev nonholonomic system. Nonlinear Dyn, 2013, 73: 357-361
    12 杨新芳, 孙现亭, 王肖肖等. 变质量Chetaev 型非完整系统Appell 方程的Mei 对称性和Mei 守恒量. 物理学报, 2011, 60(11):111101 (Yang Xinfang, Sun Xianting, Wang Xiaoxiao, et al. Mei symmetry and Mei conserved quantity of Appell equations for nonholonomic systems of Chetaev's type with variable mass. Acta Phys Sin, 2011, 60(11): 111101 (in Chinese))
    13 Valery VK. On invariant manifolds of nonholonomic systems. Regular and Chaotic Dynamics, 2012, 17: 131-141
    14 Hirsch MW, Smale S, Devaney RL. Differential Equations, Dynamical Systems, and An Introduction to Chaos. Singapore: Elsevier,2008
    15 Mc Lachlan RI, Quispel GRW, Robidoux N. Geometric integration using discrete gradients. Phil Trans R Soc Lond A, 1999, 357: 1021-1045
    16 梅凤翔. 关于梯度系统. 力学与实践, 2012, 34: 89-90 (Mei Fengxiang. On gradient system. Mechanics in Engineering, 2012, 34:89-90 (in Chinese))
    17 梅凤翔. 分析力学下卷. 北京: 北京理工大学出版社, 2013 (Mei Fengxiang. Analytical Mechanics Ⅱ. Beijing: Beijing Institute of Technology Press, 2013 (in Chinese))
    18 Chen XW, Zhao GL, Mei FX. A fractional gradient representation of the Poincaré equations. Nonlinear Dynamics, 2013, 73: 579-582
    19 Tomáš B, Ralph C, Eva F. Every ordinary differential equation with a strict Lyapunov function is a gradient system. Monatsh Math, 2012,166: 57-72
    20 Marin AM, Ortiz RD, Rodriguez JA. A generalization of a gradient system. International Mathematical Forum, 2013, 8: 803-806
    21 陈向炜, 李彦敏, 梅凤翔. 双参数对广义Hamilton 系统稳定性的影响. 应用数学和力学, 2014, 35(12): 1392-1397 (Chen Xiangwei, Li Yanmin, Mei Fengxiang. Dependance of stability of equilibrium of generalized Hamilton system on two parameters. Applied Mathematics and Mechanics, 2014, 35(12): 1392-1397 (in Chinese))
    22 梅凤翔, 吴惠彬. 广义Birkhoff 系统的梯度表示. 动力学与控制学报, 2012, 10(4): 289-292 (Mei Fengxiang, Wu Huibin. A gradient representation for generalized Birkhoff system. J of Dynam. and Control, 2012, 10(4): 289-292 (in Chinese))
    23 梅凤翔, 吴惠彬. 广义Hamilton 系统与梯度系统. 中国科学: 物理学力学天文学, 2013, 43(4): 538-540 (Mei Fengxiang, Wu Huibin. Generalized Hamilton system and gradient system. Scientia Sinica Physica, Mechanica & Astronomica, 2013, 43(4): 538-540 (in Chinese))
    24 高为炳. 运动稳定性基础. 北京: 高等教育出版社, 1989 (Gao Weibing. Foundations of Stability of Motion. Beijing: Higher Education Press, 1987 (in Chinese))
    25王照林. 运动稳定性及其应用. 北京: 高等教育出版社, 1992 (Wang Zhaolin. Stability of Motion and Its Applications. Beijing: Higher Education Press, 1992 (in Chinese))
    26 梅凤翔, 史荣昌, 张永发等. 约束力学系统的运动稳定性. 北京: 北京理工大学出版社, 1997 (Mei Fengxiang, Shi Rongchang, Zhang Yongfa, et al. Stability of Constrained Mechanical Systems. Beijing: Beijing Institute of Technology Press, 1997 (in Chinese))
    27 Jiang WA, Luo SK. Stability for manifolds of equilibrium states of generalized Hamiltonian system. Meccanica, 2012, 47: 379-383
    28 Luo SK, He JM, Xu YL. Fractional Birkhoffian method for equilibrium stability of dynamical systems. Inter J of Non-Linear Mech,2016, 78: 105-111
    29 Novoselov VS. Variational Methods in Mechanics. Leningrad: LGU Press, 1966 (in Russian)
    30 梅风翔. 非完整系统力学基础. 北京: 北京工业学院出版社, 1985 (Mei Fengxiang. Foundations of Mechanics of Nonholonomic Systems. Beijing: Beijing Institute of Technology Press, 1985 (in Chinese))
  • 期刊类型引用(12)

    1. 张毅. 非完整系统的约束Herglotz方程的梯度化及其解的稳定性. 力学学报. 2025(02): 516-522 . 本站查看
    2. 齐皓晖,王鹏. 力学系统的任意阶分数维梯度表示. 力学学报. 2024(08): 2408-2414 . 本站查看
    3. 尹明旭,陈向炜. Nielsen方程的三重组合梯度表示及其稳定性分析. 动力学与控制学报. 2023(02): 24-32 . 百度学术
    4. 尹明旭,陈向炜. Lorentz-Dirac模型的梯度表示与稳定性研究. 云南大学学报(自然科学版). 2023(03): 621-627 . 百度学术
    5. 尹明旭,陈向炜. Nielsen方程的半负定矩阵的广义梯度系统表示. 商丘师范学院学报. 2022(06): 43-48 . 百度学术
    6. 尹明旭,谢煜,陈向炜. Nielsen方程的广义梯度表示及其稳定性分析. 力学季刊. 2022(02): 340-354 . 百度学术
    7. 王嘉航,鲍四元. 事件空间中Birkhoff系统的两类广义梯度表示. 华中师范大学学报(自然科学版). 2020(02): 174-177 . 百度学术
    8. 章婷婷,张毅,张成璞,陈向炜. 判定定常Chetaev型非完整系统稳定性的三重组合梯度方法. 动力学与控制学报. 2019(04): 306-312 . 百度学术
    9. 董孟峰,陈向炜. 判定广义Birkhoff系统稳定性的三重组合梯度方法. 力学季刊. 2019(03): 543-548 . 百度学术
    10. 李彦敏,章婷婷,梅凤翔. 用具有负定矩阵的梯度系统构造稳定的变质量力学系统. 力学学报. 2018(01): 109-113 . 本站查看
    11. 章婷婷,陈向炜. 判定非自治Birkhoff系统稳定性的广义组合梯度方法. 力学季刊. 2018(04): 771-777 . 百度学术
    12. 陈向炜,张晔,梅凤翔. 用具有负定非对称矩阵的梯度系统构造稳定的广义Birkhoff系统. 力学学报. 2017(01): 149-153 . 本站查看

    其他类型引用(3)

计量
  • 文章访问数:  1293
  • HTML全文浏览量:  84
  • PDF下载量:  568
  • 被引次数: 15
出版历程
  • 收稿日期:  2015-07-19
  • 修回日期:  2016-01-03
  • 刊出日期:  2016-05-17

目录

    /

    返回文章
    返回