«上一篇
文章快速检索     高级检索
下一篇»
  力学学报  2016, Vol. 48 Issue (3): 684-691  DOI: 10.6052/0459-1879-15-268
0

栏目名称

动力学与控制

引用本文 [复制中英文]

陈向炜, 曹秋鹏, 梅凤翔. 切塔耶夫型非完整系统的广义梯度表示[J]. 力学学报, 2016, 48(3): 684-691. DOI: 10.6052/0459-1879-15-268.
[复制中文]
Chen Xiangwei, Cao Qiupeng, Mei Fengxiang. GENERALIZED GRADIENT REPRESENTATION OF NONHOLONOMIC SYSTEM OF CHETAEV'S TYPE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 684-691. DOI: 10.6052/0459-1879-15-268.
[复制英文]

基金项目

国家自然科学基金资助项目(11372169,10932002,11272050).

作者简介

陈向炜, 教授, 主要研究方向: 分析力学. E-mail: hnchenxw@163.com

文章历史

2015-07-20 收稿
2016-01-04 录用
2016-01-29 网络版发表.
切塔耶夫型非完整系统的广义梯度表示
陈向炜1 , 曹秋鹏2, 梅凤翔3    
1. 商丘师范学院物理与电气信息学院, 商丘 476000;
2. 苏州科技学院数理学院, 苏州 215009;
3. 北京理工大学宇航学院, 北京 100081
摘要:非定常非完整力学系统的稳定性研究是重要而又困难的问题,直接从微分方程出发来构造李雅普诺夫函数往往很难实现.本文给出了一种间接方法.提出了10类广义梯度系统的定义,并分别给出了10类广义梯度系统的微分方程.进一步研究一般切塔耶夫型非完整系统的广义梯度表示,给出该系统分别成为这10类广义梯度系统的条件,从而将切塔耶夫型非完整系统化成各类广义梯度系统.最后利用广义梯度系统的性质来研究切塔耶夫型非完整系统零解的稳定性.这种方法在直接构造李雅普诺夫函数发生困难时,显得更为有效.举例说明结果的应用.
关键词非完整系统    广义梯度系统    稳定性    
0 引言

约束力学系统动力学是力学的一个重要分支. 1894年赫兹首次把约束分为两类,即完整约束和非完整约束[1],非完整约束又分为切塔耶夫型和非切塔耶夫型,从而建立了非完整系统动力学. 随着科技的发展,对非完整系统动力学尤其是对切塔耶夫型非完整系统动力学的研究成了一个广泛关注的课题,研究内容涉及经典力学[2, 3],场论[4],相对论力学[5, 6, 7],航天器姿态动力学[8],机器人控制理论[9],机械工程[10],对称性、守恒量和对称性摄动[11, 12]以及不变流形[13]等.

著名数学家斯梅尔等人在其专著的"全局非线性技术"这一章节中研究了两类系统,梯度系统和哈密尔顿系统[14].这两类系统是微分方程和动力系统中的重要研究对象. 梯度系统是一个数学系统,它对研究系统的积分及解的稳定性很方便.如果梯度系统的势函数$V$能够成为李雅普诺夫函数,那么就可以研究系统的稳定性. 同时,利用梯度系统的特性,不用李雅普诺夫函数,也可得到有关稳定性的一些结论. 如果能找到梯度系统和约束力学系统的关联,研究约束力学系统的梯度表示,即约束力学系统在什么条件下可以成为梯度系统,从而可以将约束力学系统转化成为梯度系统,那么就可借助梯度系统来研究力学系统的积分和解的稳定性,避免了直接利用微分方程构造李雅普诺夫函数的困难. 通过这部分研究,可以在数学与力学的联系上找到一条研究约束力学系统运动稳定性的新途径.

通常梯度系统中的函数是不包含时间的[14, 15]. 如果函数包含时间,则称为广义梯度系统. 基于文献[16, 17, 18, 19, 20, 21, 22, 23],将广义梯度系统分成10类,其中4类是基本的,6类是组合的. 有关李雅普诺夫稳定性研究已取得重要进展,如文献[24, 25, 26, 27, 28].然而,对非定常系统仍有较大困难. 如果一个非定常力学系统能够成为广义梯度系统,而其中的函数可以成为李雅普诺夫函数,那么就可通过广义梯度系统来研究非定常力学系统的稳定性. 本文首先提出10类广义梯度系统,研究切塔耶夫型非完整系统成为梯度系统的条件. 然后将切塔耶夫型非完整系统在一定条件下化成各类广义梯度系统,并利用广义梯度系统的性质来研究这类力学系统的稳定性.

1 广义梯度系统 1.1 广义梯度系统Ⅰ

微分方程为

\[{{\dot{x}}_{i}}=-\frac{\partial V}{\partial {{x}_{i}}},i=1,2,\cdots ,m\] (1)
其中,$V = V\left( {t,{ x}} \right)$,称为广义梯度系统Ⅰ,按方程(1)求$\dot {V}$,得
\[\dot{V}=\frac{\partial V}{\partial t}-\frac{\partial V}{\partial {{x}_{i}}}\frac{\partial V}{\partial {{x}_{i}}}\] (2)
其中右端第2项小于0. 如果$V$成为李雅普诺夫函数,那么可由$\dot {V}$的符号来判断稳定性.

1.2 广义梯度系统Ⅱ

微分方程为

\[{{\dot{x}}_{i}}={{b}_{ij}}\frac{\partial V}{\partial {{x}_{j}}},i,j=1,2,\cdots ,m\] (3)
其中,$b_{ij} ({ x}) =-b_{ji} ({ x})$,$V = V\left({t,{ x}} \right)$,称为广义梯度系统Ⅱ. 按方程(3)求$\dot {V}$,得
\[\dot{V}=\frac{\partial V}{\partial t}+\frac{\partial V}{\partial {{x}_{i}}}{{b}_{ij}}\frac{\partial V}{\partial {{x}_{j}}}=\frac{\partial V}{\partial t}\] (4)
如果$V$成为李雅普诺夫函数,那么可由$\frac{\partial V}{\partial t}$的符号来判断系统解的稳定性.

1.3 广义梯度系统Ⅲ

微分方程为

\[{{\dot{x}}_{i}}={{S}_{ij}}\frac{\partial V}{\partial {{x}_{j}}},i,j=1,2,\cdots ,m\] (5)
其中,$S_{ij} = S_{ij} \left( { x} \right)$,对应的矩阵是对称负定的,而$V = V\left( {t,{ x}} \right)$,称为广义梯度系统Ⅲ. 按方程(5)求$\dot {V}$,得
\[\dot{V}=\frac{\partial V}{\partial t}+\frac{\partial V}{\partial {{x}_{i}}}{{S}_{ij}}\frac{\partial V}{\partial {{x}_{j}}}\] (6)
其中右端第2项小于0. 如果$V$可成为李雅普诺夫函数,那么可由$\dot{V}$来判断解的稳定性.

1.4 广义梯度系统Ⅳ

微分方程为

\[{{\dot{x}}_{i}}={{a}_{ij}}\frac{\partial V}{\partial {{x}_{j}}},i,j=1,2,\cdots ,m\] (7)
其中,$a_{ij} = a_{ij} ({ x})$,对应的矩阵是半负定的,而$V =V(t,{ x})$. 按方程(7)求$\dot {V}$,得
\[\dot{V}=\frac{\partial V}{\partial t}+\frac{\partial V}{\partial {{x}_{i}}}{{a}_{ij}}\frac{\partial V}{\partial {{x}_{j}}}\] (8)
其中右端第2项小于或等于0. 如果$V$可成为李雅普诺夫函数,那么可由$\dot{V}$来判断解的稳定性.

1.5 广义梯度系统 Ⅴ

微分方程的形式

\[{{\dot{x}}_{i}}=-\frac{\partial V}{\partial {{x}_{i}}}+{{b}_{ij}}\frac{\partial V}{\partial {{x}_{j}}},\quad i,j=1,2,\cdots ,m\] (9)
按方程求$\dot {V}$,得
\[\dot{V}=\frac{\partial V}{\partial t}-\frac{\partial V}{\partial {{x}_{i}}}\frac{\partial V}{\partial {{x}_{i}}}\] (10)
其中,右端第2项小于0. 如果$V$可成为李雅普诺夫函数,那么可由$\dot{V}$来判断解的稳定性.

1.6 广义梯度系统Ⅵ

微分方程有形式

\[{{\dot{x}}_{i}}=-\frac{\partial V}{\partial {{x}_{i}}}+{{S}_{ij}}\frac{\partial V}{\partial {{x}_{j}}},\quad i,j=1,2,\cdots ,m\] (11)
按方程求$\dot {V}$,得
\[\dot{V}=\frac{\partial V}{\partial t}-\frac{\partial V}{\partial {{x}_{i}}}\frac{\partial V}{\partial {{x}_{i}}}+\frac{\partial V}{\partial {{x}_{i}}}{{S}_{ij}}\frac{\partial V}{\partial {{x}_{j}}}\] (12)
其中右端第2、第3项小于0. 如果$V$可成为李雅普诺夫函数,那么可由$\dot{V}$来判断解的稳定性.

1.7 广义梯度系统Ⅶ

微分方程有形式

\[{{\dot{x}}_{i}}=-\frac{\partial V}{\partial {{x}_{i}}}+{{a}_{ij}}\frac{\partial V}{\partial {{x}_{j}}},\quad i,j=1,2,\cdots ,m\] (13)
按方程求$\dot {V}$,得
\[\dot{V}=\frac{\partial V}{\partial t}-\frac{\partial V}{\partial {{x}_{i}}}\frac{\partial V}{\partial {{x}_{i}}}+\frac{\partial V}{\partial {{x}_{i}}}{{a}_{ij}}\frac{\partial V}{\partial {{x}_{j}}}\] (14)
其中右端第2、第3项小于0. 如果$V$可成为李雅普诺夫函数,那么可由$\dot{V}$来判断解的稳定性.

1.8 广义梯度系统 Ⅷ

微分方程有形式

\[\dot{x}={{b}_{ij}}\frac{\partial V}{\partial {{x}_{j}}}+{{S}_{ij}}\frac{\partial V}{\partial {{x}_{j}}},i,j=1,2,\cdots ,m\] (15)
按方程求$\dot {V}$,得
\[\dot{V}=\frac{\partial V}{\partial t}+\frac{\partial V}{\partial {{x}_{i}}}{{S}_{ij}}\frac{\partial V}{\partial {{x}_{j}}}\] (16)
其中右端第2项小于0. 如果$V$可成为李雅普诺夫函数,那么可由$\dot{V}$来判断解的稳定性.

1.9 广义梯度系统Ⅸ

微分方程有形式

\[{{\dot{x}}_{i}}={{b}_{ij}}\frac{\partial V}{\partial {{x}_{j}}}+{{a}_{ij}}\frac{\partial V}{\partial {{x}_{j}}},i,j=1,2,\cdots ,m\] (17)
按方程求$\dot {V}$,得
\[\dot{V}=\frac{\partial V}{\partial t}+\frac{\partial V}{\partial {{x}_{i}}}{{a}_{ij}}\frac{\partial V}{\partial {{x}_{j}}}\] (18)
其中右端第2项小于或等于0. 如果$V$可成为李雅普诺夫函数,那么可由$\dot{V}$来判断解的稳定性.

1.10 广义梯度系统Ⅹ

微分方程有形式

\[{{\dot{x}}_{i}}={{a}_{ij}}\frac{\partial V}{\partial {{x}_{j}}}+{{S}_{ij}}\frac{\partial V}{\partial {{x}_{j}}},i,j=1,2,\cdots ,m\] (19)
按方程求$\dot {V}$,得
\[\dot{V}=\frac{\partial V}{\partial t}+\frac{\partial V}{\partial {{x}_{i}}}{{a}_{ij}}\frac{\partial V}{\partial {{x}_{j}}}+\frac{\partial V}{\partial {{x}_{i}}}{{S}_{ij}}\frac{\partial V}{\partial {{x}_{j}}}\] (20)
其中右端第2、第3项小于0. 如果$V$可成为李雅普诺夫函数,那么可由$\dot{V}$来判断解的稳定性.

2 切塔耶夫型非完整系统的广义梯度表示

假设力学系统的位形由$n$个广义坐标$q_s (s = 1,2,\cdots ,n)$来确定,它的运动受有$g$个双面理想切塔耶夫型非完整约束

\[{{f}_{\beta }}\left( t,q,\dot{q} \right)=0,\quad \beta =1,2,\cdots ,g\] (21)
系统的运动微分方程为
\[\left. \begin{matrix} \frac{d}{dt}\frac{\partial L}{\partial {{{\dot{q}}}_{s}}}-\frac{\partial L}{\partial {{q}_{s}}}={{Q}_{s}}+{{\lambda }_{\beta }}\frac{\partial {{f}_{\beta }}}{\partial {{{\dot{q}}}_{s}}} \\ s=1,2,\cdots ,n;\beta =1,2,\cdots ,g \\ \end{matrix} \right\}\] (22)
其中,$L = L\left( {t,{ q},\dot{ q} } \right)$为系统的拉格朗日函数,$Q_s = Q_s \left( {t,{ q},\dot { q} } \right)$为非势广义力,$\lambda _\beta $为约束乘子. 设系统非奇异,即设
\[\det \left( \frac{{{\partial }^{2}}L}{\partial {{{\dot{q}}}_{s}}\partial {{{\dot{q}}}_{k}}} \right)\ne 0\] (23)
则在运动微分方程积分之前,可求得约束乘子$\lambda _\beta $为$t,{ q },\dot { q} $的函数, 于是方程(22)可写成形式
\[\begin{align} & \\ & \left. \begin{matrix} \frac{d}{dt}\frac{\partial L}{\partial {{{\dot{q}}}_{s}}}-\frac{\partial L}{\partial {{q}_{s}}}={{Q}_{s}}+{{\Lambda }_{s}} \\ s=1,2,\cdots ,n \\ \end{matrix} \right\} \\ \end{align}\] (24)
其中
\[{{\Lambda }_{s}}=\text{ }{{\Lambda }_{s}}(t,q,\dot{q})={{\lambda }_{\beta }}\left( t,q,\dot{q} \right)\frac{\partial {{f}_{\beta }}}{\partial {{{\dot{q}}}_{s}}}\] (25)
为广义非完整约束力,已表示为$t,{ q},\dot{ q }$的函数.当$Q_s + \varLambda _s $有广义势,即满足自伴随条件时,方程(24)为与非完整系统(21)、(22)相应的完整系统的方程. 如果运动初始条件满足约束方程(21),那么相应完整系统的解就给出非完整系统的运动[29, 30]. 因此,只需研究方程(24).

在假设(23)下,可由方程(24)求出所有广义加速度,记作

\[{{\ddot{q}}_{s}}={{\alpha }_{s}}\left( t,q,\dot{q} \right),s=1,2,\cdots ,n\] (26)
\[{{a}^{s}}={{q}_{s}},{{a}^{n+s}}={{\dot{q}}_{s}}\] (27)
则方程(26)可写成一阶形式
\[{{\dot{a}}^{\mu }}={{F}_{\mu }}\left( t,a \right),\mu =1,2,\cdots ,2n\] (28)
其中
\[{{F}_{s}}={{a}^{n+s}},\quad {{F}_{n+s}}={{\alpha }_{s}}\left( t,a \right)\] (29)
引进广义动量$p_s $和哈密尔顿函数$H$
\[{{p}_{s}}=\frac{\partial L}{\partial {{{\dot{q}}}_{s}}},\quad H={{p}_{s}}{{\dot{q}}_{s}}-L\] (30)
则方程(24)写成如下一阶形式
\[{{\dot{a}}^{\mu }}={{\omega }^{\mu v}}\frac{\partial H}{\partial {{a}^{\nu }}}+{{P}_{\mu }},\mu ,v=1,2,\cdots ,2n\] (31)
其中
\[\left. \begin{align} & {{a}^{s}}={{q}_{s}} \\ & {{a}^{n+s}}={{p}_{s}} \\ & H=H\left( t,a \right) \\ & {{\omega }^{\mu \nu }}=\left[ \begin{matrix} {{\mathbf{0}}_{n\times n}} & {{\mathbf{1}}_{n\times n}} \\ -{{\mathbf{1}}_{n\times n}} & {{\mathbf{0}}_{n\times n}} \\ \end{matrix} \right] \\ & {{P}_{s}}=0{{P}_{n+s}}={{{\tilde{Q}}}_{s}}+{{{\tilde{\Lambda }}}_{s}} \\ \end{align} \right\}\] (32)
方程(28)或方程(31)一般都不是广义梯度系统的方程.

对方程(28),如果存在矩阵$ b_{\mu \nu },S_{\mu \nu },a_{\mu \nu } $和函数$V = V(t,{ a})$满足以下各式

\[{{F}_{\mu }}=-\frac{\partial V}{\partial {{a}^{\mu }}}\] (33)
\[{{F}_{\mu }}={{b}_{\mu v}}\frac{\partial V}{\partial {{a}^{v}}}\] (34)
\[{{F}_{\mu }}={{S}_{\mu v}}\frac{\partial V}{\partial {{a}^{v}}}\] (35)
\[{{F}_{\mu }}={{a}_{\mu v}}\frac{\partial V}{\partial {{a}^{v}}}\] (36)
\[{{F}_{\mu }}=-\frac{\partial V}{\partial {{a}^{\mu }}}+{{b}_{\mu v}}\frac{\partial V}{\partial {{a}^{v}}}\] (37)
\[{{F}_{\mu }}=-\frac{\partial V}{\partial {{a}^{\mu }}}+{{S}_{\mu v}}\frac{\partial V}{\partial {{a}^{v}}}\] (38)
\[{{F}_{\mu }}=-\frac{\partial V}{\partial {{a}^{\mu }}}+{{a}_{\mu v}}\frac{\partial V}{\partial {{a}^{v}}}\] (39)
\[{{F}_{\mu }}={{b}_{\mu v}}\frac{\partial V}{\partial {{a}^{v}}}+{{S}_{\mu v}}\frac{\partial V}{\partial {{a}^{v}}}\] (40)
\[{{F}_{\mu }}={{b}_{\mu v}}\frac{\partial V}{\partial {{a}^{v}}}+{{a}_{\mu v}}\frac{\partial V}{\partial {{a}^{v}}}\] (41)
\[{{F}_{\mu }}={{a}_{\mu v}}\frac{\partial V}{\partial {{a}^{v}}}+{{S}_{\mu v}}\frac{\partial V}{\partial {{a}^{v}}}\] (42)
则它可分别成为广义梯度系统Ⅰ至广义梯度系统Ⅹ.

对方程(31),如果存在矩阵$ b_{\mu \nu },S_{\mu \nu } ,a_{\mu \nu } $和函数$V = V(t,{ a})$满足以下各式

\[{{\omega }^{\mu \nu }}\frac{\partial H}{\partial {{a}^{v}}}+{{P}_{\mu }}=-\frac{\partial V}{\partial {{a}^{\mu }}}\] (43)
\[{{\omega }^{\mu \nu }}\frac{\partial H}{\partial {{a}^{v}}}+{{P}_{\mu }}={{b}_{\mu \nu }}\frac{\partial V}{\partial {{a}^{\nu }}}\] (44)
\[{{\omega }^{\mu \nu }}\frac{\partial H}{\partial {{a}^{v}}}+{{P}_{\mu }}={{S}_{\mu \nu }}\frac{\partial V}{\partial {{a}^{\nu }}}\] (45)
\[{{\omega }^{\mu \nu }}\frac{\partial H}{\partial {{a}^{v}}}+{{P}_{\mu }}={{a}_{\mu \nu }}\frac{\partial V}{\partial {{a}^{\nu }}}\] (46)
\[{{\omega }^{\mu \nu }}\frac{\partial H}{\partial {{a}^{v}}}+{{P}_{\mu }}=-\frac{\partial V}{\partial {{a}^{\mu }}}+{{b}_{\mu v}}\frac{\partial V}{\partial {{a}^{v}}}\] (47)
\[{{\omega }^{\mu \nu }}\frac{\partial H}{\partial {{a}^{v}}}+{{P}_{\mu }}=-\frac{\partial V}{\partial {{a}^{\mu }}}+{{S}_{\mu v}}\frac{\partial V}{\partial {{a}^{v}}}\] (48)
\[{{\omega }^{\mu \nu }}\frac{\partial H}{\partial {{a}^{v}}}+{{P}_{\mu }}=-\frac{\partial V}{\partial {{a}^{\mu }}}+{{a}_{\mu v}}\frac{\partial V}{\partial {{a}^{v}}}\] (49)
\[{{\omega }^{\mu \nu }}\frac{\partial H}{\partial {{a}^{v}}}+{{P}_{\mu }}={{b}_{\mu \nu }}\frac{\partial V}{\partial {{a}^{\nu }}}+{{S}_{\mu v}}\frac{\partial V}{\partial {{a}^{v}}}\] (50)
\[{{\omega }^{\mu \nu }}\frac{\partial H}{\partial {{a}^{v}}}+{{P}_{\mu }}={{b}_{\mu \nu }}\frac{\partial V}{\partial {{a}^{\nu }}}+{{a}_{\mu v}}\frac{\partial V}{\partial {{a}^{v}}}\] (51)
\[{{\omega }^{\mu \nu }}\frac{\partial H}{\partial {{a}^{v}}}+{{P}_{\mu }}={{a}_{\mu \nu }}\frac{\partial V}{\partial {{a}^{\nu }}}+{{S}_{\mu v}}\frac{\partial V}{\partial {{a}^{v}}}\] (52)
则它可分别成为广义梯度系统Ⅰ至广义梯度系统Ⅹ.

值得注意的是,如果以上各式不满足,还不能断定它不是广义梯度系统,因为这与方程的一阶形式选取相关.

切塔耶夫型非完整系统化成广义梯度系统后,便可利用广义梯度系统的性质来研究这类系统的解的稳定性.

3 应用举例

例1 切塔耶夫型非完整系统为

\[\left. \begin{align} & L=\frac{1}{2}(\dot{q}_{1}^{2}+\dot{q}_{2}^{2}) \\ & {{Q}_{1}}=-5[{{q}_{1}}{{\text{e}}^{t}}+{{{\dot{q}}}_{1}}(2+{{\text{e}}^{t}})] \\ & {{Q}_{2}}=-{{{\dot{q}}}_{2}} \\ & f=2{{{\dot{q}}}_{1}}+{{{\dot{q}}}_{2}}+{{q}_{2}}=0 \\ \end{align} \right\}\] (53)
试将其化成广义梯度系统.

解:方程(22)给出 \[\begin{array}{*{35}{l}} {{{\ddot{q}}}_{1}}=-5\left[ {{q}_{1}}{{\text{e}}^{t}}+{{{\dot{q}}}_{1}}\left( 2+{{\text{e}}^{t}} \right) \right]+2\lambda \\ {{{\ddot{q}}}_{2}}=-{{{\dot{q}}}_{2}}+\lambda \\ \end{array}\] 解得 \[\lambda =2\left[ {{q}_{1}}{{\text{e}}^{t}}+{{{\dot{q}}}_{1}}\left( 2+{{\text{e}}^{t}} \right) \right]\] 代入方程,得 \[\begin{align} & {{{\ddot{q}}}_{1}}=-{{q}_{1}}{{\text{e}}^{t}}-{{{\dot{q}}}_{1}}\left( 2+{{\text{e}}^{t}} \right) \\ & {{{\ddot{q}}}_{2}}=-{{{\dot{q}}}_{2}}+2\left[ {{q}_{1}}{{\text{e}}^{t}}+{{{\dot{q}}}_{1}}\left( 2+{{\text{e}}^{t}} \right) \right] \\ \end{align}\]

研究第一个方程的梯度表示. 令 \[{{a}^{1}}={{q}_{1}},\quad {{a}^{2}}=\dot{q}+q\left( 1+{{\text{e}}^{t}} \right)\]

则方程为 \[{{\dot{a}}^{1}}={{a}^{2}}-{{a}^{1}}\left( 1+{{\text{e}}^{t}} \right),\quad {{\dot{a}}^{2}}={{a}^{1}}-{{a}^{2}}\] 它可写成形式 \[\left[ \begin{matrix} {{{\dot{a}}}^{1}} \\ {{{\dot{a}}}^{2}} \\ \end{matrix} \right]=\left[ \begin{matrix} -1 & 0 \\ 0 & -1 \\ \end{matrix} \right]\left[ \begin{matrix} \frac{\partial V}{\partial {{a}^{1}}} \\ \frac{\partial V}{\partial {{a}^{2}}} \\ \end{matrix} \right]\] 其中 \[V=\frac{1}{2}{{\left( {{a}^{1}} \right)}^{2}}\left( 1+{{\text{e}}^{t}} \right)+\frac{1}{2}{{\left( {{a}^{2}} \right)}^{2}}-{{a}^{1}}{{a}^{2}}\] 这是一个广义梯度系统Ⅰ. $V$在$a^1 = a^2 = 0$的邻域内正定,$\dot {V}$负定, 因此,零解$a^1 = a^2 = 0$稳定.

例2 非完整系统为

\[\begin{align} & L=\frac{1}{2}\left( \dot{q}_{1}^{2}+\dot{q}_{2}^{2} \right) \\ & {{Q}_{1}}=-8{{q}_{1}}\left[ 1+{{\text{e}}^{-t}} \right]-2{{{\dot{q}}}_{1}}{{\text{e}}^{-t}} \\ & {{Q}_{2}}=-{{{\dot{q}}}_{2}} \\ & f={{{\dot{q}}}_{1}}+{{{\dot{q}}}_{2}}+{{q}_{2}}=0 \\ \end{align}\] (54)
试将其化成广义梯度系统.

解:相应完整系统的方程为 \[\begin{align} & {{{\ddot{q}}}_{1}}=-4{{q}_{1}}\left( 1+{{\text{e}}^{-t}} \right)-{{{\dot{q}}}_{1}}\frac{{{\text{e}}^{-t}}}{1+{{\text{e}}^{-t}}} \\ & {{{\ddot{q}}}_{2}}=4{{q}_{1}}\left( 1+{{\text{e}}^{-t}} \right)+{{{\dot{q}}}_{1}}\frac{{{\text{e}}^{-t}}}{1+{{\text{e}}^{-t}}}-{{{\dot{q}}}_{2}} \\ \end{align}\] 令 \[{{a}^{1}}={{q}_{1}},\quad {{a}^{2}}=\frac{{{{\dot{q}}}_{1}}}{2\left( 1+{{\text{e}}^{-t}} \right)}\] 则第一个方程有形式 \[{{\dot{a}}^{1}}=2{{a}^{2}}\left( 1+{{\text{e}}^{-t}} \right),\quad {{a}^{2}}=-2{{a}^{1}}\] 即 \[\left[ \begin{matrix} {{{\dot{a}}}^{1}} \\ {{{\dot{a}}}_{2}} \\ \end{matrix} \right]=\left[ \begin{matrix} 0 & 1 \\ -1 & 0 \\ \end{matrix} \right]\left[ \begin{matrix} \frac{\partial V}{\partial {{a}^{1}}} \\ \frac{\partial V}{\partial {{a}^{2}}} \\ \end{matrix} \right]\] 其中 \[V={{\left( {{a}^{1}} \right)}^{2}}+{{\left( {{a}^{2}} \right)}^{2}}\left( 1+{{\text{e}}^{-t}} \right)\] 这是一个梯度系统Ⅱ. $V$正定,而$\dot {V}$为 \[\dot{V}=-{{\left( {{a}^{2}} \right)}^{2}}{{\text{e}}^{-t}}<0\] 因此,零解$a^1 = a^2 = 0$是稳定的.

例3 非完整系统为

\[\left. \begin{array}{*{35}{l}} L=\frac{1}{2}(\dot{q}_{1}^{2}+\dot{q}_{2}^{2}) \\ {{Q}_{1}}=-4{{{\dot{q}}}_{1}}\left( 7+2\sin t \right)- \\ 8{{q}_{1}}\left( 10+5\sin t+\cos t \right) \\ {{Q}_{2}}=-{{q}_{1}}{{q}_{2}}-t{{{\dot{q}}}_{1}}{{q}_{2}}-t{{q}_{1}}{{{\dot{q}}}_{2}} \\ f={{{\dot{q}}}_{1}}+{{{\dot{q}}}_{2}}+t{{q}_{1}}{{q}_{2}}=0 \\ \end{array} \right\}\] (55)
试将其化成广义梯度系统.

解:可找到相应完整系统的方程为 \[\begin{array}{*{35}{l}} {{{\ddot{q}}}_{1}}=-2{{{\dot{q}}}_{1}}\left( 7+2\sin t \right)- \\ 4{{q}_{1}}\left( 10+5\sin t+\cos t \right) \\ {{{\ddot{q}}}_{2}}=-{{q}_{1}}{{q}_{2}}-t{{{\dot{q}}}_{1}}{{q}_{2}}-t{{q}_{1}}{{{\dot{q}}}_{2}}+ \\ 2{{{\dot{q}}}_{1}}\left( 7+2\sin t \right)+ \\ 4{{q}_{1}}\left( 10+5\sin t+\cos t \right) \\ \end{array}\] 令 \[{{a}^{1}}={{q}_{1}},\quad {{a}^{2}}=\frac{1}{2}\left[ {{{\dot{q}}}_{1}}+4{{q}_{1}}\left( 2+\sin t \right) \right]\] 则第一个方程成为 \[\begin{array}{*{35}{l}} {{{\dot{a}}}^{1}}=2{{a}^{2}}-4{{a}^{1}}(2+\sin t) \\ {{{\dot{a}}}^{2}}=2{{a}^{1}}\left( 2+\sin t \right)-6{{a}^{2}} \\ \end{array}\] 它可写成如下形式 \[\left[ \begin{matrix} {{{\dot{a}}}^{1}} \\ {{{\dot{a}}}^{2}} \\ \end{matrix} \right]=\left( \left[ \begin{matrix} -1 & 0 \\ 0 & -1 \\ \end{matrix} \right]+\left[ \begin{matrix} -1 & 1 \\ 1 & -2 \\ \end{matrix} \right] \right)\left[ \begin{matrix} \frac{\partial V}{\partial {{a}^{1}}} \\ \frac{\partial V}{\partial {{a}^{2}}} \\ \end{matrix} \right]\] 其中矩阵为通常的和对称负定的组合而成,是负定的,而函数$V$为 \[V={{\left( {{a}^{1}} \right)}^{2}}\left( 2+\sin t \right)+{{\left( {{a}^{2}} \right)}^{2}}\] 这是一个广义梯度系统Ⅵ. $V$在$a^1 = a^2 = 0$邻域内正定且有无穷小上界,$\dot{V}$负定,因此,零解$a^1 = a^2 = 0$渐近稳定.

例4 非完整系统为

\[\left. \begin{array}{*{35}{l}} L=\frac{1}{2}\left( \dot{q}_{1}^{2}+\dot{q}_{2}^{2}+\dot{q}_{3}^{2} \right) \\ {{Q}_{1}}=-{{{\dot{q}}}_{1}} \\ {{Q}_{2}}=-{{{\dot{q}}}_{2}} \\ {{Q}_{3}}=-\frac{4{{q}_{3}}}{2+\cos t}\left( 3-\sin t \right)- \\ {{{\dot{q}}}_{3}}\left( \frac{12+4\cos t-\sin t}{2+\cos t} \right) \\ f={{{\dot{q}}}_{1}}+{{{\dot{q}}}_{2}}{{q}_{3}}=0 \\ \end{array} \right\}\] (56)
试将其化成广义梯度系统.

解:方程(22)给出 \[\begin{align} & {{{\ddot{q}}}_{1}}=-{{{\dot{q}}}_{1}}+\lambda \\ & {{{\ddot{q}}}_{2}}=-{{{\dot{q}}}_{2}}+\lambda {{q}_{3}} \\ & {{{\ddot{q}}}_{3}}=-\frac{4{{q}_{3}}}{2+\cos t}\left( 3-\sin t \right)- \\ & {{{\dot{q}}}_{3}}\frac{12+4\cos t-\sin t}{2+\cos t} \\ \end{align}\] 令 \[{{\dot{a}}^{1}}=\frac{1}{2}\left( {{{\dot{q}}}_{3}}+4{{q}_{3}} \right)\left( 2+\cos t \right),\quad {{a}^{2}}={{q}_{3}}\] 则第3个方程成为 \[\begin{align} & {{{\dot{a}}}^{1}}=2{{a}^{2}}-\frac{2{{a}^{1}}}{2+\cos t} \\ & {{{\dot{a}}}^{2}}=\frac{2{{a}^{1}}}{2+\cos t}-4{{a}^{2}} \\ \end{align}\] 它可写成如下形式 \[\left[ \begin{matrix} {{{\dot{a}}}_{1}} \\ {{{\dot{a}}}_{2}} \\ \end{matrix} \right]=\left( \left[ \begin{matrix} -1 & 0 \\ 0 & -1 \\ \end{matrix} \right]+\left[ \begin{matrix} -1 & 1 \\ 1 & -1 \\ \end{matrix} \right] \right)\left[ \begin{matrix} \frac{\partial V}{\partial {{a}^{1}}} \\ \frac{\partial V}{\partial {{a}^{2}}} \\ \end{matrix} \right]\] 其中矩阵为通常的和半负定的组合而成,是对称负定的,而函数$V$为 \[V=\frac{{{({{a}^{1}})}^{2}}}{2+\cos t}+{{({{a}^{2}})}^{2}}\] 这是一个广义梯度系统Ⅶ. $V$在$a^1 = a^2 = 0$邻域内是正定的,且有无穷小上界,因此,零解$a^1 = a^2 =0$是渐近稳定的.

例5 非完整系统为

\[\left. \begin{array}{*{35}{l}} L=\frac{1}{2}\left( \dot{q}_{1}^{2}+\dot{q}_{2}^{2} \right) \\ f={{{\dot{q}}}_{1}}+{{{\dot{q}}}_{2}}+{{q}_{1}}=0 \\ {{Q}_{1}}=-4{{{\dot{q}}}_{1}}\left( 7-2\sin t \right)- \\ 8{{q}_{1}}\left( 10-5\sin t-\cos t \right) \\ {{Q}_{2}}=-{{{\dot{q}}}_{1}} \\ \end{array} \right\}\] (57)
试将其化成广义梯度系统.

解:方程(22)给出 \[\begin{array}{*{35}{l}} {{{\ddot{q}}}_{1}}=-4{{{\dot{q}}}_{1}}\left( 7-2\sin t \right)- \\ 8{{q}_{1}}\left( 10-5\sin t-\cos t \right)+\lambda \\ {{{\ddot{q}}}_{2}}=-{{{\dot{q}}}_{1}}+\lambda \\ \end{array}\] 解得 \[\lambda =2{{\dot{q}}_{1}}\left( 7-2\sin t \right)+4{{q}_{1}}\left( 10-5\sin t-\cos t \right)\] 代入得相应完整系统的方程 \[\begin{array}{*{35}{l}} {{{\ddot{q}}}_{1}}=-2{{{\dot{q}}}_{1}}\left( 7-2\sin t \right)- \\ 4{{q}_{1}}\left( 10-5\sin t-\cos t \right) \\ {{{\ddot{q}}}_{2}}=-{{{\dot{q}}}_{1}}+2{{{\dot{q}}}_{1}}\left( 7-2\sin t \right)+ \\ 4{{q}_{1}}\left( 10-5\sin t-\cos t \right) \\ \end{array}\] 令 \[{{a}^{1}}={{q}_{1}},\quad {{a}^{2}}=\frac{1}{2}[{{\dot{q}}_{1}}+4{{q}_{1}}\left( 2-\sin t \right)]\] 则第一个方程为 \[\begin{array}{*{35}{l}} {{{\dot{a}}}^{1}}=-4{{a}^{1}}\left( 2-\sin t \right)+2{{a}^{2}} \\ {{{\dot{a}}}^{2}}=2{{a}^{1}}\left( 2-\sin t \right)-6{{a}^{2}} \\ \end{array}\] 它可写成如下形式 \[\left[ \begin{matrix} {{{\dot{a}}}^{1}} \\ {{{\dot{a}}}^{2}} \\ \end{matrix} \right]=\left( \left[ \begin{matrix} -1 & 1 \\ 1 & -1 \\ \end{matrix} \right]+\left[ \begin{matrix} -1 & 0 \\ 0 & -2 \\ \end{matrix} \right] \right)\left[ \begin{matrix} \frac{\partial V}{\partial {{a}^{1}}} \\ \frac{\partial V}{\partial {{a}^{2}}} \\ \end{matrix} \right]\] 其中矩阵是由半负定的和对称负定的组合而成,而函数$V$为 \[V={{\left( {{a}^{1}} \right)}^{2}}\left( 2-\sin t \right)+{{\left( {{a}^{2}} \right)}^{2}}\] 它在$a^1 = a^2 = 0$的邻域内是正定的,而$\dot {V}$负定. 因此,零解$a^1 = a^2= 0$是渐近稳定的.

4 结论

非定常力学系统的稳定性研究是重要而又困难的问题,特别是对非定常非完整力学系统尤为困难. 直接从微分方程出发来构造李雅普诺夫函数往往很难实现. 本文提出的是一种间接方法,将与非完整系统相应的完整系统的方程在一定条件下化成广义梯度系统的方程,再通过广义梯度系统来构造李雅普诺夫函数,而得到系统稳定性的结论.这种方法在直接构造李雅普诺夫函数发生困难时,显得更为有效.

参考文献
[1] Hertz HR. Die Prinzipien der Mechanik. Leibzing: Gesammelte Werke, 1894
[2] 牛青萍. 经典力学基本微分原理与不完整力学组的运动方程. 力学学报, 1964, 7(2): 139-148 (Niu Qingping. The fundamental differential principle of classical mechanics and the equations of motion of nonholonomic systems. Acta Mechanica Sinica, 1964, 7(2):139-148 (in Chinese))
[3] Mei FX. Nonholonomic mechanics. ASME Appl Mech Rev, 2000,53: 283-305
[4] 李子平. 经典和量子约束系统及其对称性质. 北京: 北京工业大学出版社, 1993 (Li Ziping. Classical and Quantum Constrained Systems and Their Symmetries. Beijing: Beijing University of Technology Press, 1993 (in Chinese))
[5] Luo SK. Relativistic variational principles and equations of motion of high-order nonlinear nonholonomic systems. In: Proceedings of the International Conference on Dynamics, Vibration and Control, Beijing: Peking University Press, 1990, 645-652
[6] Fu JL, Chen LQ, Luo Y, et al. Stability for the equilibrium state manifold of relativistic Birkhoff systems. Chinese Physics, 2003,12: 351-356
[7] Zhang Y. Integrating factors and conservation laws for relativistic mechanical system. Communications in Theoretical Physics, 2005,44: 231-234
[8] 刘延柱. 航天器姿态动力学. 北京: 国防工业出版社, 1995 (Liu Yanzhu. Spacecraft Attitude Dynamics. Beijing: National Defense Industry Press, 1995 (in Chinese))
[9] Ostrovskaya S, Angels J. Nonholonomic systems revisited within the frame work of analytical mechanics. ASME Appl Mech Rev,1998, 51: 415-433
[10] Papastavridis JG. A panoramic overview of the principles and equations of motion of advanced engineering dynamics. ASME Appl Mech Rev, 1998, 51: 239-265
[11] Han YL, Wang XX, Zhang ML, et al. Special Lie symmetry and Hojman conserved quantity of Appell equations for a Chetaev nonholonomic system. Nonlinear Dyn, 2013, 73: 357-361
[12] 杨新芳, 孙现亭, 王肖肖等. 变质量Chetaev 型非完整系统Appell 方程的Mei 对称性和Mei 守恒量. 物理学报, 2011, 60(11):111101 (Yang Xinfang, Sun Xianting, Wang Xiaoxiao, et al. Mei symmetry and Mei conserved quantity of Appell equations for nonholonomic systems of Chetaev's type with variable mass. Acta Phys Sin, 2011, 60(11): 111101 (in Chinese))
[13] Valery VK. On invariant manifolds of nonholonomic systems. Regular and Chaotic Dynamics, 2012, 17: 131-141
[14] Hirsch MW, Smale S, Devaney RL. Differential Equations, Dynamical Systems, and An Introduction to Chaos. Singapore: Elsevier,2008
[15] Mc Lachlan RI, Quispel GRW, Robidoux N. Geometric integration using discrete gradients. Phil Trans R Soc Lond A, 1999, 357: 1021-1045
[16] 梅凤翔. 关于梯度系统. 力学与实践, 2012, 34: 89-90 (Mei Fengxiang. On gradient system. Mechanics in Engineering, 2012, 34:89-90 (in Chinese))
[17] 梅凤翔. 分析力学下卷. 北京: 北京理工大学出版社, 2013 (Mei Fengxiang. Analytical Mechanics Ⅱ. Beijing: Beijing Institute of Technology Press, 2013 (in Chinese))
[18] Chen XW, Zhao GL, Mei FX. A fractional gradient representation of the Poincaré equations. Nonlinear Dynamics, 2013, 73: 579-582
[19] Tomáš B, Ralph C, Eva F. Every ordinary differential equation with a strict Lyapunov function is a gradient system. Monatsh Math, 2012,166: 57-72
[20] Marin AM, Ortiz RD, Rodriguez JA. A generalization of a gradient system. International Mathematical Forum, 2013, 8: 803-806
[21] 陈向炜, 李彦敏, 梅凤翔. 双参数对广义Hamilton 系统稳定性的影响. 应用数学和力学, 2014, 35(12): 1392-1397 (Chen Xiangwei, Li Yanmin, Mei Fengxiang. Dependance of stability of equilibrium of generalized Hamilton system on two parameters. Applied Mathematics and Mechanics, 2014, 35(12): 1392-1397 (in Chinese))
[22] 梅凤翔, 吴惠彬. 广义Birkhoff 系统的梯度表示. 动力学与控制学报, 2012, 10(4): 289-292 (Mei Fengxiang, Wu Huibin. A gradient representation for generalized Birkhoff system. J of Dynam. and Control, 2012, 10(4): 289-292 (in Chinese))
[23] 梅凤翔, 吴惠彬. 广义Hamilton 系统与梯度系统. 中国科学: 物理学力学天文学, 2013, 43(4): 538-540 (Mei Fengxiang, Wu Huibin. Generalized Hamilton system and gradient system. Scientia Sinica Physica, Mechanica & Astronomica, 2013, 43(4): 538-540 (in Chinese))
[24] 高为炳. 运动稳定性基础. 北京: 高等教育出版社, 1989 (Gao Weibing. Foundations of Stability of Motion. Beijing: Higher Education Press, 1987 (in Chinese))
[25] 王照林. 运动稳定性及其应用. 北京: 高等教育出版社, 1992 (Wang Zhaolin. Stability of Motion and Its Applications. Beijing: Higher Education Press, 1992 (in Chinese))
[26] 梅凤翔, 史荣昌, 张永发等. 约束力学系统的运动稳定性. 北京: 北京理工大学出版社, 1997 (Mei Fengxiang, Shi Rongchang, Zhang Yongfa, et al. Stability of Constrained Mechanical Systems. Beijing: Beijing Institute of Technology Press, 1997 (in Chinese))
[27] Jiang WA, Luo SK. Stability for manifolds of equilibrium states of generalized Hamiltonian system. Meccanica, 2012, 47: 379-383
[28] Luo SK, He JM, Xu YL. Fractional Birkhoffian method for equilibrium stability of dynamical systems. Inter J of Non-Linear Mech,2016, 78: 105-111
[29] Novoselov VS. Variational Methods in Mechanics. Leningrad: LGU Press, 1966 (in Russian)
[30] 梅风翔. 非完整系统力学基础. 北京: 北京工业学院出版社, 1985 (Mei Fengxiang. Foundations of Mechanics of Nonholonomic Systems. Beijing: Beijing Institute of Technology Press, 1985 (in Chinese))
GENERALIZED GRADIENT REPRESENTATION OF NONHOLONOMIC SYSTEM OF CHETAEV'S TYPE
Chen Xiangwei, Cao Qiupeng, Mei Fengxiang    
1. Department of Physics and Information Engineering, Shangqiu Normal University, Shangqiu 476000, China;
2. School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215009, China;
3. School of Aerospace, Beijing Institute of Technology, Beijing 100081, China
Abstract: It is an important and di cult problem to study the stability of the non-steady and nonholonomic mechanical systems, and it is di cult to construct the Lyapunov function directly from the di erential equation. This paper gives an indirect method. The ten kinds of generalized gradient systems are proposed and the di erential equations of the ten kinds of generalized gradient systems are given respectively. Furthermore, the generalized gradient representations of a nonholonomic system of Chetaev's type are studied. The condition under which a nonholonomic system can be considered as a generalized gradient system is obtained, so the nonholonomic system of Chetaev's type is transformed into each generalized gradient systems. The characteristic of the generalized gradient systems can be used to study the stability of the nonholonomic system. This method appears to be more e ective when it is di cult to construct the Lyapunov function directly. Some examples are given to illustrate the application of the result.
Key words: nonholonomic system    generalized gradient system    stability