EI、Scopus 收录
中文核心期刊

功能梯度材料动态断裂力学的径向积分边界元法

高效伟, 郑保敬, 刘健

高效伟, 郑保敬, 刘健. 功能梯度材料动态断裂力学的径向积分边界元法[J]. 力学学报, 2015, 47(5): 868-873. DOI: 10.6052/0459-1879-15-150
引用本文: 高效伟, 郑保敬, 刘健. 功能梯度材料动态断裂力学的径向积分边界元法[J]. 力学学报, 2015, 47(5): 868-873. DOI: 10.6052/0459-1879-15-150
Gao Xiaowei, Zheng Baojing, Liu Jian. DYNAMIC FRACTURE ANALYSIS OF FUNCTIONALLY GRADED MATERIALS BY RADIAL INTEGRATION BEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5): 868-873. DOI: 10.6052/0459-1879-15-150
Citation: Gao Xiaowei, Zheng Baojing, Liu Jian. DYNAMIC FRACTURE ANALYSIS OF FUNCTIONALLY GRADED MATERIALS BY RADIAL INTEGRATION BEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5): 868-873. DOI: 10.6052/0459-1879-15-150
高效伟, 郑保敬, 刘健. 功能梯度材料动态断裂力学的径向积分边界元法[J]. 力学学报, 2015, 47(5): 868-873. CSTR: 32045.14.0459-1879-15-150
引用本文: 高效伟, 郑保敬, 刘健. 功能梯度材料动态断裂力学的径向积分边界元法[J]. 力学学报, 2015, 47(5): 868-873. CSTR: 32045.14.0459-1879-15-150
Gao Xiaowei, Zheng Baojing, Liu Jian. DYNAMIC FRACTURE ANALYSIS OF FUNCTIONALLY GRADED MATERIALS BY RADIAL INTEGRATION BEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5): 868-873. CSTR: 32045.14.0459-1879-15-150
Citation: Gao Xiaowei, Zheng Baojing, Liu Jian. DYNAMIC FRACTURE ANALYSIS OF FUNCTIONALLY GRADED MATERIALS BY RADIAL INTEGRATION BEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5): 868-873. CSTR: 32045.14.0459-1879-15-150

功能梯度材料动态断裂力学的径向积分边界元法

基金项目: 国家自然科学基金资助项目(11172055,11202045).
详细信息
    通讯作者:

    高效伟,教授,主要研究方向:计算力学,边界单元法.E-mail:xwgao@dlut.edu.cn

  • 中图分类号: TB301

DYNAMIC FRACTURE ANALYSIS OF FUNCTIONALLY GRADED MATERIALS BY RADIAL INTEGRATION BEM

Funds: The project was supported by the National Natural Science Foundation of China (11172055, 11202045).
  • 摘要: 采用径向积分边界元法分析功能梯度材料动态断裂力学问题. 该方法使用与弹性模量无关的弹性静力学开尔文基本解作为问题的基本解,在导出的边界-域积分方程中含有由材料的非均质性和惯性项引起的域积分,通过径向积分法将域积分转化为等效的边界积分,得到只含边界积分的纯边界积分方程;从而建立只需边界离散的无内部网格边界元算法. 采用候博特方法求解关于时间二阶导数的系统离散的常微分方程组. 最后通过数值算例验证本文方法的精度和有效性.
    Abstract: In this paper, the radial integration boundary element method is presented to analyze dynamic fracture mechanics problems of functionally gradient materials. The fundamental solutions for homogeneous, isotropic and linear elastic solids are used to derive the boundary-domain integration equations by weighted residual method and this approach leads to domain integrals appearing in the resulting integral equations. The radial integral method (RIM) is employed to transform the domain integrals into boundary integrals and thus the boundary-only integral equations formulation can be achieved. The Houbolt method is utilized to solve the resulted system of time-dependent algebraic equations from the discretization. Numerical results are given to demonstrate the efficiency and the accuracy of the present method.
  • 朱信华, 孟中岩. 梯度功能材料的研究现状与展望. 功能材料, 1998, 29(2): 121-127 (Zhu Xinhua, Meng Zhongyan. Current Research Status and Prospect of Functionally Gradient Materials. Journal of Functional Materials, 1998, 29(2): 121-127 (in Chinese))
    韩杰才, 徐丽, 王宝林等. 功能梯度材料的研究进展及展望. 固体火箭技术, 2004, 27: 207-215 (Han Jiecai, Xu Li, Wamg Baolin, et al. Progress and prospects of functional gradient materials. Journal of Solid Rocket Technology, 2004, 27: 207-215 (in Chinese))
    Chen YM. Numerical computation of dynamic stress intensity factors by a Lagrangian finite-difference method (the HEMP code). Engineering Fracture Mechanics, 1975, 7(4): 653-660
    Erdogan F. Fracture mechanics of functionally graded materials. Composites Engineering, 1995, 5(7): 753-770
    Li CY, Weng GJ. Dynamic stress intensity factor of a cylindrical interface crack with a functionally graded interlayer. Mechanics of Materials, 2001, 33(6): 325-333
    李玉龙, 刘元镛. 带裂纹板在冲击载荷作用下动态应力强度因子的数值计算. 航空学报, 1989, 10(5): 227-233 (Li Yulong, Liu Yuanyong. Numerical calculations of dynamic stress intensity factor of center-cracked plate under impact loading. Acta Aeronautica et Astronautic Sinica, 1989, 10(5): 227-233 (in Chinese))
    Anlas G, Santare MH, Lambros J. Numerical calculation of stress intensity factors in functionally graded materials. International Journal of Fracture, 2000, 104(2): 131-143
    Kim JH, Paulino GH. Finite element evaluation of mixed mode stress intensity factors in functionally graded materials. International Journal for Numerical Methods in Engineering, 2002, 53(8): 1903-1935
    程玉民, 嵇醒, 贺鹏飞. 动态断裂力学的无限相似边界元法. 力学学报, 2004, 36(1): 43-48 (Cheng Yumin, Ji Xing, He Pengfei. Infinite similar boundary element method for dynamic fracture mechanics. Acta Mechanica Sinica, 2004, 36(1): 43-48 (in Chinese))
    李越川, 杨耀墀. 边界积分方程法在动态断裂力学中的数值计算研究. 应用力学学报, 1990, 7(1): 42-50 (Li Yuechuan, Yang Yaochi. The numerical computation study of boundary integral equation method in dynamic fracture mechanics. Chinese Journal of Applied Mechanics, 1990, 7(1): 42-50 (in Chinese))
    李春雨, 邹振祝, 段祝平. 功能梯度材料裂纹尖端动态应力场. 力学学报, 2001, 33(2): 270-274 (Li Chunyu, Zou Zhenzhu, Duan Zhuping. Dynamic stress field around the crack tip in a functionally graded material. Acta Mechanica Sinica, 2001, 33(2): 270-274 (in Chinese))
    Zhang Ch, Savaidis A, Savaidis G, et al. Transient dynamic analysis of a cracked functionally graded material by a BIEM. Computational Materials Science, 2002, 26: 167-174
    Zhang Ch, Savaidis A. Time-domain BEM for dynamic crack analysis. Mathematics and Computers in Simulation, 1999, 50: 351-362
    Zhang Ch, Sladek J, Sladek V. Effects of material gradients on transient dynamic mode-III stress intensity factors in a FGM. International Journal of Solids & Structures, 2003, 40(20): 5251-5270
    李树忱, 程玉民, 李术才. 动态断裂力学的无网格流行方法. 物理学报, 2006, 55(9): 4760-4766 (Li Shuchen, Cheng Yumin, Li Shucai. Meshless manifold method for dynamic fracture mechanics. Acta Physica Sinica, 2006, 55(9): 4760-4766 (in Chinese))
    龙述尧, 张国虎. 基于MLPG法的动态断裂力学问题. 湖南大学学报 (自然科学版), 2012, 39(11): 41-45 (Long Shuyao, Zhang Guohu. An analysis of the dynamic fracture problem by the meshless Local Petrov- Galerkin method. Journal of Hunan University (Natural Sciences), 2012, 39(11): 41-45 (in Chinese))
    Sladek J, Sladek V, Zhang Ch. An advanced numerical method for computing elastodynamic fracture parameters in functionally graded materials. Computational Materials Science, 2005, 32(3-4): 532-543
    Sladek J, Sladek V, Zhang Ch. Evaluation of the stress intensity factors for cracks in continuously nonhomogeneous solids, part II: Meshless method. Mechanics of Advanced Materials and Structures, 2008, 15(6-7): 444-452
    Gao XW, Zhang Ch, Sladek J, et al. Fracture analysis of functionally graded materials by a BEM. Composites Science and Technology, 2008, 68: 1209-1215
    Gao XW. A boundary element method without internal cells for two-dimensional and three-dimensional elastoplastic problems. ASME Journal of Applied Mechanics, 2002, 69: 154-160
    高效伟, Zhang Ch. 非均质问题中的无网格边界单元法. 固体力学学报, 2006, 27: 62-69 特刊 (Gao Xiaowei, Zhang Ch. Meshless BEM in nonhomogeneous problems. Acta Mechanic Solida Sinica, 2006, 27: 62-69 (in Chinese))
    Gao XW, Guo L, Zhang Ch. Three-step multi-domain BEM solver for nonhomogeneous material problems. Engineering Analysis with Boundary Elements, 2007, 31: 965-937
    Houbolt JC. A recurrence matrix solution for the dynamic response of elastic aircraft. Journal of Aeronautical Sciences, 1950, 17: 371-376
计量
  • 文章访问数:  1489
  • HTML全文浏览量:  149
  • PDF下载量:  643
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-28
  • 修回日期:  2015-06-23
  • 刊出日期:  2015-09-17

目录

    /

    返回文章
    返回