EI、Scopus 收录
中文核心期刊

中等严重程度冠状动脉病变模型的血流动力学参数分析

刘赵淼, 南斯琦, 史艺

刘赵淼, 南斯琦, 史艺. 中等严重程度冠状动脉病变模型的血流动力学参数分析[J]. 力学学报, 2015, 47(6): 1058-1064. DOI: 10.6052/0459-1879-15-085
引用本文: 刘赵淼, 南斯琦, 史艺. 中等严重程度冠状动脉病变模型的血流动力学参数分析[J]. 力学学报, 2015, 47(6): 1058-1064. DOI: 10.6052/0459-1879-15-085
Liu Zhaomiao, Nan Siqi, Shi Yi. HEMODYNAMIC PARAMETERS ANALYSIS FOR CORONARY ARTERY STENOSIS OF INTERMEDIATE SEVERITY MODEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 1058-1064. DOI: 10.6052/0459-1879-15-085
Citation: Liu Zhaomiao, Nan Siqi, Shi Yi. HEMODYNAMIC PARAMETERS ANALYSIS FOR CORONARY ARTERY STENOSIS OF INTERMEDIATE SEVERITY MODEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 1058-1064. DOI: 10.6052/0459-1879-15-085
刘赵淼, 南斯琦, 史艺. 中等严重程度冠状动脉病变模型的血流动力学参数分析[J]. 力学学报, 2015, 47(6): 1058-1064. CSTR: 32045.14.0459-1879-15-085
引用本文: 刘赵淼, 南斯琦, 史艺. 中等严重程度冠状动脉病变模型的血流动力学参数分析[J]. 力学学报, 2015, 47(6): 1058-1064. CSTR: 32045.14.0459-1879-15-085
Liu Zhaomiao, Nan Siqi, Shi Yi. HEMODYNAMIC PARAMETERS ANALYSIS FOR CORONARY ARTERY STENOSIS OF INTERMEDIATE SEVERITY MODEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 1058-1064. CSTR: 32045.14.0459-1879-15-085
Citation: Liu Zhaomiao, Nan Siqi, Shi Yi. HEMODYNAMIC PARAMETERS ANALYSIS FOR CORONARY ARTERY STENOSIS OF INTERMEDIATE SEVERITY MODEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 1058-1064. CSTR: 32045.14.0459-1879-15-085

中等严重程度冠状动脉病变模型的血流动力学参数分析

基金项目: 高等学校博士学科点专项科研基金资助项目(20131103110025).
详细信息
    通讯作者:

    刘赵淼,教授,主要研究方向:微流体力学、计算流体力学、流固耦合分析.E-mail:lzm@bjut.edu.cn

  • 中图分类号: O38

HEMODYNAMIC PARAMETERS ANALYSIS FOR CORONARY ARTERY STENOSIS OF INTERMEDIATE SEVERITY MODEL

Funds: The project was supported by the Specialized Research Fund for the Doctoral Program of Higher Education (20131103110025).
  • 摘要: 基于中等严重程度冠状动脉病变模型,应用流固耦合方法数值研究了中等严重程度面积狭窄率(AS=50%,65%,75%)和病变长度(LL= 0 mm,15 mm,20 mm) 对血流动力学参数的影响.研究发现:随着AS与LL的增大,病变血管分支的壁面剪应力变化愈加剧烈,狭窄段下游的壁面剪应力值逐渐降低,狭窄段下游回流区的长度呈"S"型增长,模型最大剪切速率呈抛物线型增长, 压力分布曲线显著下降.血流动力学参数结果表明, 中等严重程度面积狭窄率和病变长度均是可能引发血栓的因素,临床上应予以重视.
    Abstract: This paper studies the e ects of coronary artery stenosis of intermediate severity on atherosclerotic process using fluid-structure interaction method. The aim of the study was to analysis the impact of area stenosis (AS = 50%, 65%, 75%) and lesion length (LL = 10 mm, 15 mm, 20 mm) on hemodynamic parameters. Through numerical simulations, it is found that a big margin of oscillating wall shear stress was generated in the branch of coronary artery stenosis and a low wall shear stress was generated in the downstream of stenosis when area stenosis and lesion length increase. The length of the recirculation zone downstream of the stenosis will present with S-shaped growth and the maximum shear rate will grow as parabolic at the same time. In addition, stenosis can bring about a significant decline in pressure. Hemodynamic parameters results show that, intermediate severity area stenosis and lesion length are the factors may cause thrombosis, clinical should attach importance to it.
  • Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics-2015 update: a report from the american heart association. Circulation, 2015, 131: e29-e322
    Zarins CK, Taylor CA, Min JK. Computed fractional flow reserve (FFTCT) derived from coronary CT angiography. Journal of Cardiovascular Translational Research, 2013, 6(5): 708-714
    Zhang JM, Zhong L, Luo T, et al. Numerical simulation and clinical implications of stenosis in coronary blood flow. In: BioMed Research International, 2014: 1-10
    Taylor CA, Fonte TA, Min JK. Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve. Journal of the American College of Cardiology, 2013, 61(22): 2233-2241
    Koo BK, Erglis A, Doh JH, et al. Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Journal of the American College of Cardiology, 2011, 58(19): 1889-1996
    Yong AS, Ng AC, Brieger D, et al. Three-dimensional and two-dimensional quantitative coronary angiography, and their prediction of reduced fractional flow reserve. European Heart Journal, 2011, 32(3): 345-353
    Iguchi T, Hasegawa T, Nishimura S, et al. Impact of lesion length on functional significance in intermediate coronary lesions. Clinical Investigations, 2013, 36(3): 172-177
    Kristensen TS, Engstrømb T, Kelbæk H, et al. Correlation between coronary computed tomographic angiography and fractional flow reserve. International Journal of Cardiology, 2010, 144(2): 200-205
    Alghamdi A, Balgaith M, Alkhaldi A. Influence of the length of coronary artery lesions on fractional flow reserve across intermediate coronary obstruction. European Heart Journal Supplements, 2014, 16(Supplement B): 76-79
    Li ZY, Taviani V, Tang T, et al. The mechanical triggers of plaque rupture: shear stress vs pressure gradient. The British Journal of Radiology, 2009, 82(Spec No 1): S39-S45
    Gijsen F, van der Giessen A, van der Steen A, et al. Shear stress and advanced atherosclerosis in human coronary arteries. Journal of Biomechanics, 2013, 46(2): 240-247
    Yin W, Shanmugavelayudam SK, Rubenstein DA. The effect of physiologically relevant dynamic shear stress on platelet and endothelial cell activation. Thrombosis Research, 2011, 127(3): 235-241
    Dolan JM, Kolega J, Meng H. High wall shear stress and spatial gradients in vascular pathology: A review. Annals of Biomedical Engineering, 2013, 41(7): 1411-1427
    Javadzadegan A, Yong AS, Chang M, et al. Flow recirculation zone length and shear rate are differentially affected by stenosis severity in human coronary arteries. American Journal of Physiology. Heart and Circulatory Physiology, 2013, 73(2): H559-H566
    McGah PM, Leotta DF, Beach KW, et al. A longitudinal study of remodeling in a revised peripheral artery bypass graft using 3D ultrasound imaging and computational hemodynamics. Journal of Biomechanical Engineering, 2011, 133(4)041008: 1-10
    Razavi A, Shirani E, Sadeghi MR. Numerical simulation of blood pulsatile flow in a stenosed carotid artery using different rheological models. Journal of Biomechanics, 2011, 44(11): 2021-2030
    Schrauwen JTC, Wentzel JJ, van der Steen AFW, et al. Geometry-based pressure drop prediction in mildly diseased human coronary arteries. Journal of Biomechanics, 2014, 47(8):1810-1815
    Colciago CM, Deparis S, Quarteroni A. Comparisons between reduced order models and full 3D models for fluid-structure interaction problems in haemodynamics. Journal of Computational and Applied Mathematics, 2014, 265: 120-138
    Wu JH, Liu GY, Huang WH, et al. Transient blood flow in elastic coronary arteries with varying degrees of stenosis and dilatations: CFD modelling and parametric study. Computer Methods in Biomechanics and Biomedical Engineering, 2015, 18(16): 1835-1845
    Chaichana T, Sun Z, Jewkes J. Impact of plaques in the left coronary artery on wall shear stress and pressure gradient in coronary side branches. Computer Methods in Biomechanics and Biomedical Engineering, 2014, 17(2): 108-118
    Furie B, Furie BC. Mechanisms of thrombus formation. The New England Journal of Medicine, 2008, 359(9): 938-949
    王季尧, 李文平, 王盛章. 冠状动脉中氧输运的数值模拟研究. 生物医学工程学进展, 2012, 33(3): 141-146 (Wang Jiyao, Li Wenping, Wang Shengzhang. A numerical study on oxygen transport in a coronary artery. Shanghai of Biomedical Engineering, 2012, 33(3): 141-146 (in Chinese))
计量
  • 文章访问数:  1009
  • HTML全文浏览量:  90
  • PDF下载量:  1122
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-17
  • 修回日期:  2015-06-28
  • 刊出日期:  2015-11-17

目录

    /

    返回文章
    返回