EI、Scopus 收录
中文核心期刊

圆环旋转黏性液体射流破碎液滴粒径与速度数量密度分布相关性研究

阎凯, 宁智, 吕明, 孙春华, 付娟, 李元绪

阎凯, 宁智, 吕明, 孙春华, 付娟, 李元绪. 圆环旋转黏性液体射流破碎液滴粒径与速度数量密度分布相关性研究[J]. 力学学报, 2016, 48(3): 566-575. DOI: 10.6052/0459-1879-15-084
引用本文: 阎凯, 宁智, 吕明, 孙春华, 付娟, 李元绪. 圆环旋转黏性液体射流破碎液滴粒径与速度数量密度分布相关性研究[J]. 力学学报, 2016, 48(3): 566-575. DOI: 10.6052/0459-1879-15-084
Yan Kai, Ning Zhi, Lü Ming, Sun Chunhua, Fu Juan, Li Yuanxu. STUDY ON CORRELATION OF BREAKUP DROPLET SIZE AND VELOCITY DISTRIBUTIONS OF AN ANNULAR SWIRLING VISCOUS LIQUID SHEET[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 566-575. DOI: 10.6052/0459-1879-15-084
Citation: Yan Kai, Ning Zhi, Lü Ming, Sun Chunhua, Fu Juan, Li Yuanxu. STUDY ON CORRELATION OF BREAKUP DROPLET SIZE AND VELOCITY DISTRIBUTIONS OF AN ANNULAR SWIRLING VISCOUS LIQUID SHEET[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 566-575. DOI: 10.6052/0459-1879-15-084
阎凯, 宁智, 吕明, 孙春华, 付娟, 李元绪. 圆环旋转黏性液体射流破碎液滴粒径与速度数量密度分布相关性研究[J]. 力学学报, 2016, 48(3): 566-575. CSTR: 32045.14.0459-1879-15-084
引用本文: 阎凯, 宁智, 吕明, 孙春华, 付娟, 李元绪. 圆环旋转黏性液体射流破碎液滴粒径与速度数量密度分布相关性研究[J]. 力学学报, 2016, 48(3): 566-575. CSTR: 32045.14.0459-1879-15-084
Yan Kai, Ning Zhi, Lü Ming, Sun Chunhua, Fu Juan, Li Yuanxu. STUDY ON CORRELATION OF BREAKUP DROPLET SIZE AND VELOCITY DISTRIBUTIONS OF AN ANNULAR SWIRLING VISCOUS LIQUID SHEET[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 566-575. CSTR: 32045.14.0459-1879-15-084
Citation: Yan Kai, Ning Zhi, Lü Ming, Sun Chunhua, Fu Juan, Li Yuanxu. STUDY ON CORRELATION OF BREAKUP DROPLET SIZE AND VELOCITY DISTRIBUTIONS OF AN ANNULAR SWIRLING VISCOUS LIQUID SHEET[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 566-575. CSTR: 32045.14.0459-1879-15-084

圆环旋转黏性液体射流破碎液滴粒径与速度数量密度分布相关性研究

基金项目: 国家自然科学基金(5127600,北京市自然科学基金(3132016),中央高校基本科研业务费专项基金(2016JBM049)和国家高技术研究发展计划(2013AA065303)资助项目.
详细信息
    通讯作者:

    宁智,教授,主要研究方向:射流雾化以及微粒沉降等.E-mail:zhining@bjtu.edu.cn

  • 中图分类号: U473

STUDY ON CORRELATION OF BREAKUP DROPLET SIZE AND VELOCITY DISTRIBUTIONS OF AN ANNULAR SWIRLING VISCOUS LIQUID SHEET

  • 摘要: 压力旋流喷嘴被广泛应用于航空发动机、船用发动机、车用汽油缸内直喷发动机、燃气轮机等动力机械的燃油喷射系统中.以压力旋流喷嘴射流为研究对象,开展了圆环旋转黏性液体射流破碎液滴粒径与速度数量密度分布相关性问题研究.对于液体射流,以往的研究往往对破碎液滴粒径数量密度分布或速度数量密度分布进行单独研究,对于这两种数量密度分布之间关系的研究较少;从相关性的角度对圆环旋转黏性液体射流破碎液滴粒径与速度数量密度分布之间的关系进行研究.采用最大熵原理方法建立了圆环旋转黏性液体射流破碎液滴粒径与速度联合概率密度函数.对圆环旋转黏性液体射流破碎液滴粒径与速度联合概率密度函数进行了讨论,对圆环旋转黏性液体射流破碎液滴粒径数量密度分布与速度数量密度分布的相关性问题进行了研究.研究结果表明,为了给出正确的圆环旋转黏性液体射流破碎液滴粒径与速度联合概率密度函数,射流守恒约束条件中必须同时包括质量守恒定律、动量守恒定律以及能量守恒定律;破碎液滴粒径的数量密度分布与速度数量密度分布密切相关;射流旋转强度对破碎液滴粒径数量密度与速度数量密度分布结构影响不大,对破碎液滴粒径数量密度和速度数量密度的分布区域影响较大.
    Abstract: Pressure swirling atomizers are wildly used in the fuel injection systems of aero-engines, marine engines, vehicle gasoline direct injection engines and gas turbines, et al. Considering about a pressure swirling atomizer liquid jet, the correlation of breakup droplet size and velocity distributions of an annular swirling viscous liquid sheet is studied. Joint probability density function of droplet size and velocity distribution of an annular swirling viscous liquid sheet is reduced based on maximum entropy method. The correlation between droplet size distribution and droplet velocity distribution are then discussed. Results show that with the right form of joint probability density function, the conservation laws of mass, momentum and energy must be included together as the constraint conditions. Droplet size and velocity distributions are closely related. And the liquid sheet swirling strength does not affect the structure of joint probability density function a lot, but the liquid swirling strength affect the distribution region to some extent.
  • 1 Yoon SS, Heister SD. A nonlinear atomization model based on a boundary layer instability mechanism. Physics of Fluids, 2004,16(1): 47-61
    2 Yoon SS, Heister SD. A fully non-linear model for atomization of high-speed jets. Engineering Analysis with Boundary Elements,2004, 28(4): 345-357
    3 Park H, Heister SD. Nonlinear simulation of free surfaces and atomization in pressure swirl atomizers. Physics of Fluids, 2006, 18(5):052103
    4 Chandrasekhar S. Hydrodynamic and Hydromagnetic Stability. Oxford: Oxford University Press, 1961
    5 Tomotika S. On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid. Proceedings of the Royal Society of London, 1935, 150(870): 322-327
    6 Eggers J. Nonlinear dynamics and breakup of free-surface flows. Reviews of Modern Physics, 1997, 69(3): 865-929
    7 Bhatia JC, Durst F. Comparative study of some probability distribu tions applied to liquid sprays. Particle & Particle Systems Characterization,1989, 6(1-4): 151-162
    8 Xu TH, Durst F, Tropea C. The three-parameter log-hyperbolic distribution and its application to particle sizing. Atomization and Sprays, 1993, 3(1): 109-124
    9 Boyaval S, Dumouchel C. The maximum entropy formalism and the determination of spray drop size distribution. Proceedings of ICLASS-Europe-1998, Manchester, 1998
    10 Shannon CE. A mathematical theory of communications. Bell Labs Technical Journal, 1948, 27(3): 379-423
    11 Jaynes ET. Information theory and statistical mechanics. Physical Review, 1957, 106(4): 620-630
    12 Jaynes ET. Information theory and statistical mechanics II. Physical Review, 1957, 108(2): 171-190
    13 Sellens RW, Brzustowski TA. A prediction of the drop size distribution in a spray from first principles. Atomization and Spray Technology,1985, 1(2): 89-102
    14 van der Geld CWM, Vermeer H. Prediction of drop size distributions in sprays using the maximum entropy formalism: the effect of satellite formation. International Journal of Multiphase Flow, 1994,20(2): 363-381
    15 Cousin J, Yoon SJ, Dumouchel C. Coupling of classical linear theory and maximum entropy formalism for prediction of drop size distribution in sprays: application to pressure-swirl atomizers. Atomization and Sprays, 1996, 6(5): 601-622
    16 Chin LP, Switzer G, Tankin RS. Bi-modal size distributions predictions predicted by maximum entropy and compared with experiments in sprays. Combustion Science and Technology, 1995, 109(1-6): 35-52
    17 Mitra SK, Li X. A predictive model for droplet size distribution in sprays. Atomization and Sprays, 1999, 9(1): 29-50
    18 Ahmadi M, Sellens RW. A simplified maximum-entropy-based drop size distribution. Atomization and Sprays, 1993, 3(3): 291-310
    19 Ashgriz N. Handbook of Atomization and Sprays: Theory and Applications. New York: Springer Verlag, 2011
    20 曹建明. 喷雾学. 北京: 机械工业出版社, 2005 (Cao Jianming. Study of Spray. Beijing: China Machine Press, 2005 (in Chinese))
    21 Lin SP. Breakup of Liquid Sheets and Jets. New York: Cambridge University Press, 2003
    22 Eggers J, Villermaux E. Physics of liquid jets. Reports on Progress in Physics, 2008, 71(3): 036601
    23 Sirignano WA, Mehring C. Review of theory of distortion and disintegration of liquid streams. Progress in Energy and Combustion Science, 2000, 26: 609-655
    24 Sellens RW, Brzustowski TA. A prediction of the drop size distribution in a spray from first principles. Atomization and Spray Technology,1985, 1(2): 89-102
    25 Li X, Tankin RS. Droplet size distribution: a derivation of Nukiyama-Tanasawa type distribution function. Combustion Science and Technology, 1987, 56(1-3): 65-76
    26 Mitra SK. Breakup process of plane liquid sheets and prediction of initial droplet size and velocity distributions in sprays. [PhD Thesis]. Waterloo: University of Waterloo, 2001
    27 Kim WT, Mitra SK, Li X, et al. A predictive model for the initial droplet size and velocity distributions in sprays and comparison with experiments. Particle & Particle Systems Characterization, 2003,20: 135-149
    28 Yan K, Ning Z, Lü M, et al. Study on droplet size and velocity distributions of a pressure swirl atomizer based on the Maximum Entropy Formalism. Entropy, 2015, 17: 580-593
    29 Cao J. On the theoretical prediction of fuel droplet size distribution in nonreactive diesel sprays. Transactions of the ASME, 2002, 124:182-185
    30 Cao J, He J, Li X. Droplet size and velocity distribution function in sprays based on maximum entropy principle. Journal of Traffic and Transportation Engineering, 2008, 8(5): 1-8
  • 期刊类型引用(5)

    1. 郭立梅,吕明,宁智. 同轴气流式液体射流分裂液滴粒径研究. 力学学报. 2022(02): 405-413 . 本站查看
    2. 刘赵淼,王凯峰,王治林,郑会龙,张谭,康振亚. 阶梯型加速段对旋流喷嘴雾化特性的影响. 力学学报. 2018(03): 570-578 . 本站查看
    3. 阎凯,宁智,赵晋,吕明,孙春华. 旋流喷射液滴粒径与速度数量密度分布. 内燃机学报. 2018(05): 463-470 . 百度学术
    4. 董琪琪,胡海豹,陈立斌,余思潇. 矩形疏水沟槽表面水滴振荡特性. 力学学报. 2017(06): 1252-1259 . 本站查看
    5. 甘云华,江政纬,李海鸽. 锥射流模式下乙醇静电喷雾液滴速度特性分析. 力学学报. 2017(06): 1272-1279 . 本站查看

    其他类型引用(5)

计量
  • 文章访问数:  1034
  • HTML全文浏览量:  94
  • PDF下载量:  711
  • 被引次数: 10
出版历程
  • 收稿日期:  2015-03-16
  • 修回日期:  2016-03-22
  • 刊出日期:  2016-05-17

目录

    /

    返回文章
    返回