EI、Scopus 收录
中文核心期刊

环形薄板二维驻波的研究

方奕忠, 王钢, 沈韩, 崔新图, 廖德驹, 冯饶慧

方奕忠, 王钢, 沈韩, 崔新图, 廖德驹, 冯饶慧. 环形薄板二维驻波的研究[J]. 力学学报, 2015, 47(4): 664-671. DOI: 10.6052/0459-1879-15-023
引用本文: 方奕忠, 王钢, 沈韩, 崔新图, 廖德驹, 冯饶慧. 环形薄板二维驻波的研究[J]. 力学学报, 2015, 47(4): 664-671. DOI: 10.6052/0459-1879-15-023
Fang Yizhong, Wang Gang, Shen Han, Cui Xintu, Liao Deju, Feng Raohui. THE RESEARCH OF 2-DIMENSIONAL STANDINGWAVES ON ANNULAR PLATE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4): 664-671. DOI: 10.6052/0459-1879-15-023
Citation: Fang Yizhong, Wang Gang, Shen Han, Cui Xintu, Liao Deju, Feng Raohui. THE RESEARCH OF 2-DIMENSIONAL STANDINGWAVES ON ANNULAR PLATE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4): 664-671. DOI: 10.6052/0459-1879-15-023
方奕忠, 王钢, 沈韩, 崔新图, 廖德驹, 冯饶慧. 环形薄板二维驻波的研究[J]. 力学学报, 2015, 47(4): 664-671. CSTR: 32045.14.0459-1879-15-023
引用本文: 方奕忠, 王钢, 沈韩, 崔新图, 廖德驹, 冯饶慧. 环形薄板二维驻波的研究[J]. 力学学报, 2015, 47(4): 664-671. CSTR: 32045.14.0459-1879-15-023
Fang Yizhong, Wang Gang, Shen Han, Cui Xintu, Liao Deju, Feng Raohui. THE RESEARCH OF 2-DIMENSIONAL STANDINGWAVES ON ANNULAR PLATE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4): 664-671. CSTR: 32045.14.0459-1879-15-023
Citation: Fang Yizhong, Wang Gang, Shen Han, Cui Xintu, Liao Deju, Feng Raohui. THE RESEARCH OF 2-DIMENSIONAL STANDINGWAVES ON ANNULAR PLATE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4): 664-671. CSTR: 32045.14.0459-1879-15-023

环形薄板二维驻波的研究

基金项目: 国家自然科学基金资助项目(11175268) 和中山大学实验教学研究(改革) 基金项目资助课题(YJ201109) 资助.
详细信息
    通讯作者:

    方奕忠, 工程师, 博士, 主要研究方向: 数学物理、弹性力学和理论声学. E-mail: stsfyz@mail.sysu.edu.cn

    沈韩, 副教授, 博士, 主要研究方向: 电介质物理实验及理论研究. E-mail: shenhan@mail.sysu.edu.cn

  • 中图分类号: O343.1;O326;O421+.5

THE RESEARCH OF 2-DIMENSIONAL STANDINGWAVES ON ANNULAR PLATE

Funds: The project was supported by the National Natural Science Foundation of China (11175268) and Program for Experimental Teaching Innovative Foundation of Sun Yet-sen University (YJ201109).
  • 摘要: 在理论上和实验上对环形薄板二维驻波波节图形(克拉尼图形) 进行了研究. 通过在极坐标下对垂直板面方向小振动方程进行分离变量, 求解出环形薄板小振动方程在外边界悬空时分别在两种内边界条件, 即内边界悬空和内边界简支下的解析解的简正模式, 并计算了在第一种边条件下几种共振模式的径向波速近似值, 以及两种边条件下的圆形驻波波节线的半径和薄板的弹性模量. 发现通过调节环形薄板上点振动源的频率, 可精确控制薄板上出现的克拉尼图形. 实验上观察到了仅有圆形波节线, 仅有辐射状波节线, 以及两种波节线同时存在3 种简正模式的情形, 且波节线的数量可严格控制. 理论结果跟实验符合得很好.
    Abstract: The analytical solution of Chladni figures on a thin metal plate is a difficult problem in theoretical acoustics. The problem can be solved quite completely if the plate is circular or rectangular and the vibration frequency is low, but the solution becomes rather difficult if the plate is annular and the frequency is high. In this paper, the two-dimensional standing waves on an annular plate (Chladni figures) are investigated both experimentally and theoretically at two kinds of boundary conditions, the free outer edge with simply supported inner edge and both free edges , respectively. It is found that the Chladni figures can be precisely controlled by adjusting the vibrating frequency and position of the vibration source. Three kinds of patterns have been observed, only having circular nodal lines, only having radial nodal lines, and having both of the two kinds of nodal lines, distinguishedly. Furthermore, the approximate radial wave velocities, the radii of standing wave nodal circles in different frequencies, and the elastic modulus of the plate are also obtained. The results of experiments well correspond with those from the analytical solutions.
  • Chladni EFF. Entdeckungenüber die Theory des Klanges, Breitkopf und Härtel, Leipzig, 1787
    Hawkes JJ, Radel S. Acoustofluidics 22: Multi-wavelength resonators, applications and considerations. Lab on a Chip, 2013, 13: 610-627
    Ochs JB, Snowdon JC. Transmissibility across simply supported thin plates. II. Rectangular plates with loading masses and straight ribs. The Journal of the Acoustical Society of America, 1976, 59: 350-354
    Hodges CH, Woodhouse J. Theories of noise and vibration transmission in complex structures. Reports on Progress in Physics , 1986, 49: 107-170
    Dorrestijn M, Bietsch A, Acikalin T, et al. Chladnifigures revisited based on Nanomechanics. Physical Review Letters , 2007, 98: 026102
    Stein J, Stöckmann H-J. Experimental determination of billiard wave functions. Physical Review Letters , 1992, 68: 2867-2870
    Proefschrift. Newton vs Stokes: Competing Forces in Granular Matter. Henk Jan van Gerner, Enschede, The Netherlands, 2009
    Thomas B, Squires AM. Support for faraday's view of circulation in a fine-powder chladniheap. Physical Review Letters , 1998, 81: 574-577
    Rayleigh L. The Theory of Sound (Vol. I) (2st Ed. revised and enlarged), New York: Dover Publication, 1945: 358-363
    方奕忠, 王钢, 沈韩等. 方形薄板二维驻波的研究. 物理实验, 2014, 34(1): 33-36 (FangYizhong, Wang Gang, Shen Han, et al. Research of 2-dimensional standing waves in square plate. Physics Experimentation, 2014, 34(1): 33-36 (in Chinese))
    方奕忠, 王钢, 沈韩等. 圆形薄板二维驻波的研究. 大学物理, 2015, 34(3): 19-24 (Fang Yizhong, Wang Gang, Shen Han, et al. Research for two-dimensional standing waves on circular plate. College Physics, 2015, 34(3): 19-24 (in Chinese))
    Chladni patterns in vibrated plates, http://www.physics.utoronto.ca/ enonlinear/chladni.html. 2013-12-1
    宋力, 张平. 关于弹性地基上圆环形薄板振动问题的解答(续一). 沈阳工业学院学报, 1996, 15(1): 85-94 (Song Li, Zhang Pin. Solutions to the vibration of ring-shaped thin plate on the elastic base (continuation 1). Journal of Shenyang Institute of Technology, 1996, 15(1): 85-94 (in Chinese))
    宋力, 张景异. 关于弹性地基上圆环形薄板振动问题的解答. 金属成型工艺, 1997, 15(4): 34-38 (Song Li, Zhang Jinyi. Solutions to the vibration of ring-shaped thin plate on the elastic base. Metal Forming Technology, 1997, 15(4): 34-38 (in Chinese))
    吴伟, 宋力. 弹性地基上圆环形薄板振动问题的研究. 沈阳工业学院学报, 1997, 16(3): 46-50 (Wu Wei, Song Li. Solutions to the vibration of ring-shaped thin plate on the elastic base. Journal of Shenyang Institute of Technology, 1997, 16(3): 46-50 (in Chinese))
    肖世富, 陈学前. 挠性边界圆薄板的半解析模态分析. 应用力学学报, 2014, 31(5): 667-670 (Xiao Shifu, Chen Xueqian. Semi-analytic modal analysis of the circular thin plate with a flexible boundary. Chinese Journal of Applied Mechanics, 2014, 31(5): 667-670 (in Chinese))
    莫尔斯 PM, 英格特KU. 理论声学(上册). 吕如榆, 杨训仁译. 北京:科学出版社, 1984: 210-211, 252-257 (Morse PM, Ingard KU. Theoretical Acoustics. Lü RY, Yang XR, transl. Beijing: Science Press, 1984: 210-211, 252-257 (in Chinese))
    钱伟长, 叶开沅. 弹性力学. 北京:科学出版社, 1956. 285-286 (Qian Weizhang, Ye Kaiyuan. Elastic Mechanics. Beijing: Science Press, 1956. 285-286(in Chinese))
    王龙甫. 弹性理论. 北京:科学出版社, 1978. 357-360 (Wang Longfu. Theory of Elasticity. Beijing: Science Press, 1978. 357-360 (in Chinese))
    朗道 LD, 栗弗席兹 EM. 弹性理论(第五版). 武际可, 刘寄星译. 北京: 高等教育出版社, 2011. 115-116 (Landau LD, Lifschitz EM. Theory of Elasticity. Wu JK, Liu JX, transl. Beijing: Higher Education Press, 2011. 115-116 (in Chinese))
    Rossing TD. Chladni's law for vibrating plates. American Journal of Physics , 1982, 50: 271-274
    黄迪山, 邵何锡. 多自由度参数振动受迫响应的三角级数逼近. 应用力学学报, 2014, 31(5): 703-709 (Huang Dishan, Shao Hexi. Vector trigonometric series approach to forced response of a multiple freedom parametric vibration. Chinese Journal of Applied Mechanics, 2014, 31(5): 703-709 (in Chinese))
    Fan YP, Ji XJ, Liu XP, et al. The nonlinear analysis of elastic wave of piezoelectric crystal plate with perturbation method. Wave Motion, 2014, 51(5): 798-803
    Zhang CL, Chen WQ, Yang JS, et al. Equations for high-frequency vibrations of piezoelectric plates derived from a semi-mixed variational principle and applications in resonators. International Journal of Applied Electromagnetics and Mechanics, 2013, 41(4): 361-373
计量
  • 文章访问数:  1611
  • HTML全文浏览量:  124
  • PDF下载量:  1562
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-18
  • 修回日期:  2015-05-04
  • 刊出日期:  2015-07-17

目录

    /

    返回文章
    返回