EI、Scopus 收录
中文核心期刊

页岩气藏压裂缝网扩展数值模拟

曾青冬, 姚军, 孙致学

曾青冬, 姚军, 孙致学. 页岩气藏压裂缝网扩展数值模拟[J]. 力学学报, 2015, 47(6): 994-999. DOI: 10.6052/0459-1879-15-014
引用本文: 曾青冬, 姚军, 孙致学. 页岩气藏压裂缝网扩展数值模拟[J]. 力学学报, 2015, 47(6): 994-999. DOI: 10.6052/0459-1879-15-014
Zeng Qingdong, Yao Jun, Sun Zhixue. NUMERICAL MODELING OF FRACTURE NETWORK PROPAGATION IN SHALE RESERVOIRS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 994-999. DOI: 10.6052/0459-1879-15-014
Citation: Zeng Qingdong, Yao Jun, Sun Zhixue. NUMERICAL MODELING OF FRACTURE NETWORK PROPAGATION IN SHALE RESERVOIRS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 994-999. DOI: 10.6052/0459-1879-15-014
曾青冬, 姚军, 孙致学. 页岩气藏压裂缝网扩展数值模拟[J]. 力学学报, 2015, 47(6): 994-999. CSTR: 32045.14.0459-1879-15-014
引用本文: 曾青冬, 姚军, 孙致学. 页岩气藏压裂缝网扩展数值模拟[J]. 力学学报, 2015, 47(6): 994-999. CSTR: 32045.14.0459-1879-15-014
Zeng Qingdong, Yao Jun, Sun Zhixue. NUMERICAL MODELING OF FRACTURE NETWORK PROPAGATION IN SHALE RESERVOIRS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 994-999. CSTR: 32045.14.0459-1879-15-014
Citation: Zeng Qingdong, Yao Jun, Sun Zhixue. NUMERICAL MODELING OF FRACTURE NETWORK PROPAGATION IN SHALE RESERVOIRS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 994-999. CSTR: 32045.14.0459-1879-15-014

页岩气藏压裂缝网扩展数值模拟

基金项目: 国家自然科学基金(51234007)、青年科学基金(51404291)和山东省自然科学基金(ZR2014EEQ010)资助项目.
详细信息
    作者简介:

    姚军,教授,主要研究方向:油气藏数值模拟.E-mail:RCOGFR_UPC@126.com

  • 中图分类号: TE357.1+1

NUMERICAL MODELING OF FRACTURE NETWORK PROPAGATION IN SHALE RESERVOIRS

Funds: The project was supported by the National Natural Science Foundation of China (51234007), the National Science Fund for Young Scholars (51404291) and the Natural Science Foundation of Shandong Province, China (ZR2014EEQ010).
  • 摘要: 为探究页岩气藏水力压裂复杂裂缝网络的形成机理,开展了缝网扩展的数值模拟研究.考虑应力阴影和天然裂缝作用,建立了井筒和裂缝中流体流动模型,利用位移不连续方法求解应力与位移不连续量,然后构建了压力与裂缝宽度的迭代方程,并采用牛顿迭代法求解.通过比较数值解经典模型解析解,验证了模型和迭代解法的正确性.多簇裂缝同步扩展时裂缝间距越小,压裂液分配到各条裂缝越不均匀,靠近井筒跟部的裂缝的分流量越大,从而裂缝宽度越大;考虑天然裂缝作用时,逼近角越小或者应力各向异性越弱,水力裂缝越容易发生转向扩展,裂缝网络越复杂.
    Abstract: To investigate the forming mechanism of complex fracture network during the process of hydraulic fracturing in shale gas reservoirs, numerical simulation of fracture network propagation has been carried out. Taking the e ects of stress shadowing and natural fractures into account, coupled mathematical model of fluid flow in the wellbore and fractures is established. The stress and displacement discontinuity are solved by using displacement discontinuity method. New iterative algorithm of pressure and fracture widths has been constructed and solved with Newton iteration method. The mathematical model and numerical algorithm are validated by comparing numerical solutions to analytical solutions with consideration of leak-o e ect. Parameters sensitivity analysis is performed to study the influencing factors of hydraulic fractures propagation. As to simultaneous propagation of multiple cluster fractures: the smaller fracture spacing is, the more unevenly fracturing fluid is distributed to each fracture; the fracture near the heel of wellbore receives more fluid than other fractures and becomes wider; When taking the e ect of natural fractures into account, the smaller approaching angle is or the weaker stress anisotropy is, the more possibly hydraulic fractures change propagation direction and the more complex fracture networks become.
  • Fisher MK, Heinze JR, Harris CD, et al. Optimizing horizontal completions in the Barnett shale with microseismic fracture mapping. Journal of Petroleum Technology, 2005, 57(3): 41-42
    Mayerhofer MJ, Lolon E, Warpinski NR, et al. What is stimulated reservoir volume? SPE Production & Operations, 2010, 25(01): 89-98
    王杰, 李世海, 周东 等. 模拟岩石破裂过程的块体单元离散弹簧模型. 岩土力学, 2013, 34(8): 2355-2362 (Wang Jie, Li Shihai, Zhou Dong, et al. A block-discrete-spring model to simulate failure process of rock. Rock and Soil Mechanics, 2013, 34(8): 2355-2362 (in Chinese))
    Xu W, Ganguly U, Weng X. Wiremesh: a novel shale fracturing simulator. CPS/SPE International Oil & Gas Conference and Exhibition, Society of Petroleum Engineers, 2010
    Weng X, Kresse O, Cohen C, et al. Modeling of hydraulic fracture network propagation in a naturally fractured formation. SPE Production Operations, 2011, 26(4): 368-380
    Meyer B, Bazan L. A discrete fracture network model for hydraulically induced fractures theory, parametric and case studies. SPE Hydraulic Fracturing Technology Conference, Society of Petroleum Engineers, 2011
    Fu P, Johnson SM, Carrigan CR. An explicitly coupled hydro-geomechanical model for simulating hydraulic fracturing in arbitrary discrete fracture networks. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(14): 2278-2300
    Wu K, Olson JE. Simultaneous multifracture treatments: fully coupled fluid flow and fracture mechanics for horizontal wells. SPE Journal, 2014: 1-10
    Olson JE, Dahi-Taleghani A. Modeling simultaneous growth of multiple hydraulic fractures and their interaction with natural fractures. SPE Hydraulic Fracturing Technology Conference, Society of Petroleum Engineers, 2009
    Cheng Y. Mechanical interaction of multiple fractures exploring impacts of the selection of the spacing/number of perforation clusters on horizontal shale gas wells. SPE Journal, 2012, 17(4): 992-1001
    Crouch S. Solution of plane elasticity problems by the displacement discontinuity method. I. Infinite body solution. International Journal for Numerical Methods in Engineering, 1976, 10(2): 301-343
    Olson JE. Predicting fracture swarms-the influence of subcritical crack growth and the crack tip process zone on joint spacing in rock. Geological Society, London, Special Publications, 2004, 231(1): 73-88
    Warpinski NR, Teufel LW. Influence of geologic discontinuities on hydraulic fracture propagation. Journal of Petroleum Technology, 1987, 39(2): 209-220
    Renshaw CE, Pollard DD. An experimentally verified criterion for propagation across unbounded frictional interfaces in brittle, linear elastic materials. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1995, 32(3): 237-249
    Gu H, Weng X, Lund J, et al. Hydraulic fracture crossing natural Fracture at non-orthogonal angles, a criterion, its validation and applications. SPE Hydraulic Fracturing Technology Conference and Exhibition, Society of Petroleum Engineers, 2011
    Nordgern RP. Propagation of a vertical hydraulic fracture. Society of Petroleum Engineers Journal, 1972, 12(4): 306-314
    Michael JE, Kenneth GN. Reservoir Stimulation, 3rd Edition. Chichester: Wiley, 2000
计量
  • 文章访问数:  1389
  • HTML全文浏览量:  121
  • PDF下载量:  1390
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-05
  • 修回日期:  2015-06-17
  • 刊出日期:  2015-11-17

目录

    /

    返回文章
    返回