EI、Scopus 收录
中文核心期刊

高超声速舵面热气动弹性不确定性及全局灵敏度分析

叶坤, 叶正寅, 屈展, 邬晓敬, 张伟伟

叶坤, 叶正寅, 屈展, 邬晓敬, 张伟伟. 高超声速舵面热气动弹性不确定性及全局灵敏度分析[J]. 力学学报, 2016, 48(2): 278-289. DOI: 10.6052/0459-1879-14-406
引用本文: 叶坤, 叶正寅, 屈展, 邬晓敬, 张伟伟. 高超声速舵面热气动弹性不确定性及全局灵敏度分析[J]. 力学学报, 2016, 48(2): 278-289. DOI: 10.6052/0459-1879-14-406
Ye Kun, Ye Zhengyin, Qu Zhan, Wu Xiaojin, Zhang Weiwei. UNCERTAINTY AND GLOBAL SENSITIVITY ANALYSIS OF HYPERSONIC CONTROL SURFACE AEROTHERMOELASTIC[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 278-289. DOI: 10.6052/0459-1879-14-406
Citation: Ye Kun, Ye Zhengyin, Qu Zhan, Wu Xiaojin, Zhang Weiwei. UNCERTAINTY AND GLOBAL SENSITIVITY ANALYSIS OF HYPERSONIC CONTROL SURFACE AEROTHERMOELASTIC[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 278-289. DOI: 10.6052/0459-1879-14-406
叶坤, 叶正寅, 屈展, 邬晓敬, 张伟伟. 高超声速舵面热气动弹性不确定性及全局灵敏度分析[J]. 力学学报, 2016, 48(2): 278-289. CSTR: 32045.14.0459-1879-14-406
引用本文: 叶坤, 叶正寅, 屈展, 邬晓敬, 张伟伟. 高超声速舵面热气动弹性不确定性及全局灵敏度分析[J]. 力学学报, 2016, 48(2): 278-289. CSTR: 32045.14.0459-1879-14-406
Ye Kun, Ye Zhengyin, Qu Zhan, Wu Xiaojin, Zhang Weiwei. UNCERTAINTY AND GLOBAL SENSITIVITY ANALYSIS OF HYPERSONIC CONTROL SURFACE AEROTHERMOELASTIC[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 278-289. CSTR: 32045.14.0459-1879-14-406
Citation: Ye Kun, Ye Zhengyin, Qu Zhan, Wu Xiaojin, Zhang Weiwei. UNCERTAINTY AND GLOBAL SENSITIVITY ANALYSIS OF HYPERSONIC CONTROL SURFACE AEROTHERMOELASTIC[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 278-289. CSTR: 32045.14.0459-1879-14-406

高超声速舵面热气动弹性不确定性及全局灵敏度分析

基金项目: 国家自然科学基金重点资助项目(91216202).
详细信息
    通讯作者:

    叶坤,在读博士生,主要研究方向:高超声速热气动弹性.E-mail:yekun@mail.nwpu.edu.cn

  • 中图分类号: V211.47

UNCERTAINTY AND GLOBAL SENSITIVITY ANALYSIS OF HYPERSONIC CONTROL SURFACE AEROTHERMOELASTIC

  • 摘要: 鉴于高超声速中气动热预测的不确定性影响热气动弹性分析的可靠性,提出一种温度分布参数化模型,基于此模型,对高超声速舵面热气动弹性中气动热的不确定性及全局灵敏度进行分析,分析方法:求解N-S方程得到物面的温度分布,对此温度分布进行参数化,分别采用蒙特卡罗模拟(Monte Carlo simulation,MCS)方法和稀疏网格数值积分(spare grid numerical integration,SGNI)方法生成不确定性及全局灵敏度分析所需样本,对所有样本都进行热气动弹性分析,热气动弹性分析过程为:由样本得到温度分布,基于此温度分布,考虑热应力和材料属性的影响,对结构进行模态分析,将结构模态插值到气动网格,采用基于CFD的当地流活塞理论进行了气动弹性分析.分别在两种飞行状态下进行分析,计算结果表明:(1) M=5,H=15 km,结构固有频率和颤振分析结果的变异系数约为5.83%;(2) M=6,H=15 km,结构和颤振分析结果的变异系数约为8.84%.两种状态下,两个不确定参数的全局灵敏度都在50%左右,两者耦合作用很小,约为0.与MCS方法相比,SGNI方法显著的提高了不确定性分析效率.
    Abstract: Considering that the uncertainty of hypersonic aerothermodynamics prediction affects the reliability of aerothermoelastic analysis, a parameterized model for temperature distribution is therefore proposed.Based on this model, uncertainty and global sensitivity analysis on aerothermodynamics of hypersonic control surface aerothermoelastic are conducted.In the present analysis method, temperature distribution of the control surface is first obtained by solving NS equation and then parameterized.Using Monte Carlo simulation(MCS) method and spare grid numerical integration(SGNI) method to generate samples for analyzing uncertainly and global sensitivity and then analyzing all the samples, aerothermoelastic analysis is carried out as following:To get temperature distribution by the sample, then to analyze structural modal under the effect of structure thermal stress and material property, interpolate structural mode to the aerodynamic grid, and then to analyze aeroelasticity of the control surface in state space based on CFD local piston theory.Under two fly conditions, the calculation results show that:(1) With M=5 and H=15 km, the variation coefficient of natural frequency and flutter analysis is 5.83%,(2) With M=6 and H=15 km, variation coefficient of natural frequency of the structure and flutter analysis is 8.84%, and the global sensitivity of the two uncertainty parameters is about 50% under the two conditions.And the coupling of two parameters is about 0%, which is very small.Comparing with MCS method, SGNI method can be used to improve the efficiency of uncertainty analysis significantly.
  • 1 Klock RJ, Cesnik CES. Aerothermoelastic smulation of airbreathing hypersonic vehicles. AIAA Paper, 2014-0149, 2014
    2 杨超, 许赟, 谢长川. 高超声速气动弹性力学综述. 航空学报, 2010, 31:1-11(Yang Chao, Xu Yun, Xie Changchuan. Aerothermal-aeroelastic two-way coupling method for hypersonic curved panel flutter. Acta Aeronautica Et Astronautica Sinica, 2010, 31:1-11(in Chinese))
    3 McNamara JJ, Friedmann PP. Aeroelastic and aerothermoelastic analysis in hypersonic flow:past, present, and future. AIAA Journal, 2011, 49(6):1089-1122
    4 Lamorte N, Friedmann PP. Aerothermoelastic and aeroelastic studies of hypersonic vehicles using CFD. AIAA Paper, 2013-1591, 2013
    5 McNamara JJ, Friedmann PP. Three-dimensional aeroelastic and aerothermoelastic behavior in hypersonic flow. AIAA Paper, 2005-2175, 2005
    6 Culler AJ, McNamara JJ. Studies on fluid-thermal-structural coupling for aerothermoelasticity in hypersonic flow. AIAA Journal, 2010, 48(8):1721-1738
    7 Lamorte N, Friedmann PP. Aerothermoelastic and aeroelastic studies of hypersonic vehicles using CFD. AIAA Paper, 2013-1591, 2013
    8 Crowel AR, McNamara JJ. Model reduction of computational aerothermodynamics for hypersonic aerothermoelasticity. AIAA Journal, 2012, 50(1):74-84
    9 Falkiewicz N, Cesnik CES, Crowell AR, et al. Reduced-order aerothermoelastic framework for hypersonic vehicle vontrol simulation. AIAA Journal, 2011, 49(8):1625-1646
    10 杨超, 李国曙, 万志强. 气动热-气动弹性双向耦合的高超声速壁板颤振分析方法. 中国科学:技术科学, 2012, 42(4):369-377(Yang Chao, Li Guoshu, Wang Zhiqiang, Aerothermal-aeroelastic two-way coupling method for hypersonic curved panel flutter. Scientia slnica technologica, 2012, 42(4):369-377(in Chinese))
    11 吴志刚, 惠俊鹏, 杨超. 高超声速下翼面的热颤振工程分析. 北京航空航天大学学报, 2005,3(3):270-273(Wu Zhigang, Hui Junpeng, Yang Chao. Hypersonic aerothermoelastic analysis of wings. Journal of Beijing University of Aeronautics and Astronautics, 2005, 3(3):270-273(in Chinese))
    12 张伟伟, 夏巍, 叶正寅. 一种高超音速热气动弹性数值研究方法. 工程力学, 2006, 23(2):41-46(Zhang Weiwei, Xia Wei, Ye Zhengyin. A numerical method for hypersonic aerothermoelasticity. Engineering Mechanice, 2006, 23(2):41-46(in Chinese))
    13 Bose D, Brown JL, Prabhu DK, et al. Uncertainty assessment of hypersonic aerothermodynamics prediction capability. Journal of Spacecraft and Rockets, 2013, 5050(1):12-18
    14 Shigeru KI. Uncertainty evaluation of thermocouple aeroheating measurements for hypersonic wind-tunnel tests. Journal of Spacecraft and Rockets, 2006, 43(3):698-700
    15 Weaver AB, Alexeenko AA, Greendyke RB, et al. Flow field uncertainty analysis for hypersonic CFD simulations. AIAA Paper, 2010-1180, 2010
    16 Hosder S, Bettis BR. Uncertainty and sensitivity analysis for reentry flows with inherent and model-form uncertainties. Journal of Spacecraft and Rockets, 2012, 49(2):193-206
    17 Lamorte N, Friedmann PP, Glaz B, et al. Uncertainty propagation in hypersonic aerothermoelastic analysis. Journal of Aircraft, 2014, 51(1):192-203
    18 Danowsky BP, Chrstos JR, Klyde DH, et al. Evaluation of aeroelastic uncertainty analysis methods. Journal of Aircraft, 2010, 47(4):1266-1273
    19 Sobol IM. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math Comput Simulat, 2001, 55(1-3):271-280
    20 Gerstner T, Griebel M. Numerical integration using sparse grids. Numer Algorithms, 1998, 18(3-4):209-232
    21 Novak E, Ritter K. High dimensional integration of smooth functions over cubes. Numer Math, 1996, 75(1):79-97
    22 Xiong FF, Greene S, ChenW, et al. A new sparse grid based method for uncertainty propagation. Struct Multidisc Optim, 2010, 41(3):335-349
    23 Zhang WW, Ye ZY, Zhang CA, et al. Analysis of supersonic aeroelastic problem based on local piston theory method. AIAA Journal, 2009, 47(10):2321-2328
计量
  • 文章访问数:  1250
  • HTML全文浏览量:  124
  • PDF下载量:  575
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-16
  • 修回日期:  2016-01-03
  • 刊出日期:  2016-03-17

目录

    /

    返回文章
    返回