EI、Scopus 收录
中文核心期刊

考虑夹杂相互作用的复合陶瓷夹杂界面的断裂分析

付云伟, 张龙, 倪新华, 刘协权, 于金凤, 陈诚

付云伟, 张龙, 倪新华, 刘协权, 于金凤, 陈诚. 考虑夹杂相互作用的复合陶瓷夹杂界面的断裂分析[J]. 力学学报, 2016, 48(1): 154-162. DOI: 10.6052/0459-1879-14-399
引用本文: 付云伟, 张龙, 倪新华, 刘协权, 于金凤, 陈诚. 考虑夹杂相互作用的复合陶瓷夹杂界面的断裂分析[J]. 力学学报, 2016, 48(1): 154-162. DOI: 10.6052/0459-1879-14-399
Fu Yunwei, Zhang Long, Ni Xinhuay, Liu Xiequan, Yu Jinfeng, Chen Cheng. INTERFACE CRACKING ANALYSIS WITH INCLUSIONS INTERACTION IN COMPOSITE CERAMIC[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 154-162. DOI: 10.6052/0459-1879-14-399
Citation: Fu Yunwei, Zhang Long, Ni Xinhuay, Liu Xiequan, Yu Jinfeng, Chen Cheng. INTERFACE CRACKING ANALYSIS WITH INCLUSIONS INTERACTION IN COMPOSITE CERAMIC[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 154-162. DOI: 10.6052/0459-1879-14-399
付云伟, 张龙, 倪新华, 刘协权, 于金凤, 陈诚. 考虑夹杂相互作用的复合陶瓷夹杂界面的断裂分析[J]. 力学学报, 2016, 48(1): 154-162. CSTR: 32045.14.0459-1879-14-399
引用本文: 付云伟, 张龙, 倪新华, 刘协权, 于金凤, 陈诚. 考虑夹杂相互作用的复合陶瓷夹杂界面的断裂分析[J]. 力学学报, 2016, 48(1): 154-162. CSTR: 32045.14.0459-1879-14-399
Fu Yunwei, Zhang Long, Ni Xinhuay, Liu Xiequan, Yu Jinfeng, Chen Cheng. INTERFACE CRACKING ANALYSIS WITH INCLUSIONS INTERACTION IN COMPOSITE CERAMIC[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 154-162. CSTR: 32045.14.0459-1879-14-399
Citation: Fu Yunwei, Zhang Long, Ni Xinhuay, Liu Xiequan, Yu Jinfeng, Chen Cheng. INTERFACE CRACKING ANALYSIS WITH INCLUSIONS INTERACTION IN COMPOSITE CERAMIC[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 154-162. CSTR: 32045.14.0459-1879-14-399

考虑夹杂相互作用的复合陶瓷夹杂界面的断裂分析

基金项目: 国家自然科学基金资助项目(11272355).
详细信息
    通讯作者:

    付云伟,博士研究生,研究方向:复合材料损伤与断裂.E-mail:fywoec@163.com

  • 中图分类号: O346

INTERFACE CRACKING ANALYSIS WITH INCLUSIONS INTERACTION IN COMPOSITE CERAMIC

  • 摘要: 复合材料中夹杂含量较高时,夹杂间的相互作用能显著改变材料细观应力应变场分布,基体和夹杂中的平均应力应变水平也会发生较大变化,导致复合材料强度等力学性能发生显著变化. 为修正单一夹杂模型运用在实际材料中的误差,基于相互作用直推估计法,建立一种考虑含夹杂相互作用的夹杂界面裂纹开裂模型. 首先根据相互作用直推估计法,得到残余应力和外载应力共同作用下夹杂中的平均应力,再计算无限大基体中相同的夹杂达到相同应力场时的等效加载应力,将此加载应力作为含界面裂纹夹杂的等效应力边界条件,在此边界条件下求得界面裂纹尖端的应力强度因子,进而得到界面裂纹开裂的极限加载条件,并分析了夹杂弹性性能、含量、热残余应力、夹杂尺寸等因素对界面裂纹开裂条件的影响. 结果表明,方法能够有效修正单夹杂模型运用在实际材料中的误差,较大的残余应力对界面裂纹开裂有重要的影响,夹杂刚度的影响并非单调且比较复杂;在残余应力较小时,降低柔性夹杂刚度或者增大刚性夹杂刚度都有利于提高材料强度;扩大夹杂尺寸将导致裂纹开裂极限应力显著降低,从而降低材料强度.
    Abstract: Micro strain and stress field and the average field is significantly influenced by the interaction of inclusions of high volume fraction, and the composite mechanical properties changes a lot by the introduced inclusions. To reduce the error of using the theoretical model with single inclusion in real multi-inclusion-material property prediction, an inclusion interface cracking model is established based on the interaction direct derivative (IDD) estimate. Average e ective stress field is obtained under applied loading and residual stress based on the IDD estimate, then the stress intensity factor (SIF) of interface arc-crack around circular inclusion under the stress boundary condition is calculated. The critical applied stress is evaluated according to the e ective stress field and the interface arc-crack SIF, and the influence of inclusion elastic modulus, volume fraction, residual stress, and inclusion size are analysed. The result indicates that the method is e ective. Residual stress has remarkable influence to interface cracking; the critical applied stress is not monotonic and complicated with the inclusion sti ness variation when the residual stress is large, while the critical applied stress is increasing with the soft inclusion decreasing the sti ness and the sti inclusion increasing the sti ness when the residual stress is small; large size inclusion decreases the critical applied stress and detrimental to composite strength.
  • 1 Eshelby JD. The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc Royal Soc, 1957, A241: 376-396
    2 Hill R. A self-consistent mechanics of composite materials. J Mech Phys Solids, 1965, 13: 213-222
    3 Budiansky B. On the elastic modules of some heterogeneous materials. J Mech Phys Solids, 1965, 13: 223-227
    4 Mori T, Tanaka K. Average stress in matrix and average energy of materials with misfitting inclusion. Act Metal, 1973, 21: 571-574
    5 Zheng QS, Du DX. An explicit and universally applicable estimate for the e ective properties of multiphase composites which accounts for inclusion distribution. J Mech Phys Solids, 2001, 49(11): 2765-2788
    6 Du DX, Zheng QS. A further exploitation on the e ective selfconsistent scheme and IDD estimate for the e ective properties of multiphase composites which accounts for inclusion distribution. Acta Mech, 2001, 157(1-4): 61
    7 Kang H, Milton GW. Solutions to the Pólya-Szegö conjecture and the weak Eshelby conjecture. Archive for Rational Mechanics and Analysis, 2008, 188(1): 93-116
    8 Liu LP. Solutions to the Eshelby conjectures. Proceedings of the Royal Society of London A, 2008, 464: 573-594
    9 Zou WN, He QC, Huang MJ, et al. Eshelby's problem of nonelliptical inclusions. Journal of the Mechanics and Physics of Solids,2010, 58: 346-372
    10 Huang MJ, Wu P, Guan GY, et al. Explicit expressions of the Eshelby tensor for an arbitrary 3D weakly non-spherical inclusion. Acta Mech, 2011, 217: 17-38
    11 Xu BX,Wang MZ. Special properties of Eshelby tensor for a regular polygonal inclusion. Acta Mech Sinica, 2005, 21: 267-271
    12 Shodja HM. Shokrolahi-Zadeh B. Ellipsoidal domains: piecewise nonuniform and impotent eigenstrain fields. J Elasticity, 2007, 86:1-18
    13 Jasiuk I, Tsuchida E, Mura T. The sliding inclusion under shear. Int J Solids Struct, 1987, 23(10): 1373-1385
    14 Mura T, Jasiuk I, Tsuchida B. The stress field of a sliding inclusion. Int J Solids Struct, 1985, 21(12): 1165-1179
    15 Xu BX, Mueller R, Wang MZ. The Eshelby property of sliding inclusions. Arch Appl Mech, 2011, 81: 19-35
    16 Bonfoh N, Hounkpati V, Sabar H. New micromechanical approach of the coated inclusion problem: Exact solution and applications. Computational Materials Science, 2012, 62: 175-183
    17 Duan HL, Wang J, Huang ZP, et al. Eshelby formalism for nanoinhomogeneities. Mathematical, Physical and Engineering Sciences,2005, 461(2062): 3335-3353
    18 Prasad PBN, Simha KRY. Interface crack around circular inclusion: SIF, kinking, debonding energetics. Engineering Fracture Mechanics,2003, 70: 285-307
    19 Toya M. A crack along the interface of a circular inclusion embedded in an infinite solid. J Mech Phys Solids, 1974, 22: 325-348
    20 Chao R, Laws N. Closure of an arc crack in an isotropic homogeneous material due to uniaxial loading. Q Jl Mech Appl Math, 1992,45: 629-640
    21 Chen YZ, Chen RS. Interaction between curved crack and elastic inclusion in an infinite plate. Archive of Applied Mechanics, 1997, 67:566-575
    22 Chen JK,Wang GT, Yu ZZ, et al. Critical particle size for interfacial debonding in polymer/nanoparticle composites. Composites Science and Technology, 2010, 70: 861-872
    23 Moorthy S, Ghosh S. A Voronoi cell finite element model for particle cracking in elastic-plastic composite materials. Comput Methods Appl Mech Engrg, 1998, 151: 377-400
    24 Caballero A, López CM, Carol I. 3D meso-structural analysis of concrete specimens under uniaxial tension. Comput. Methods Appl Mech Engrg, 2006, (195): 7182-7195
    25 Wang D, Zhao J, Zhou Yonghui, et al. Extended finite element modeling of crack propagation in ceramic tool materials by considering the microstructural features. Computational Materials Science,2013, 77: 236-244
    26 England AH. An arc crack around a circular elastic inclusion. J Appl Mech, 1966, 32: 637-640
    27 郭荣鑫, Lormand G, 李俊昌. 夹杂物问题应力场的数值计算. 昆 明理工大学学报(理工版), 2004, 29(3): 51-55 (Guo Rongxin, Lormand G, Li Junchang. Numerical calculation of the stress field for the inclusion problem. Journal of Kunming University of Science and Technology(Science and Technology), 2004, 29(3): 51-55 (in Chinese))
    28 Shodja HM, Rad IZ, Soheilifard R. Interacting cracks and ellipsoidal inhomogeneities by the equivalent inclusion method. Journal of the Mechanics and Physics of Solids, 2003, 51: 945-960
    29 Li ZH, Yang LH. The application of the Eshelby equivalent inclusion method for unifying modulus and transformation toughening. International Journal of Solids and Structures, 2002, 39: 5225-5240
    30 Othmani Y, Delannay L, Doghri I. Equivalent inclusion solution adapted to particle debonding with a non-linear cohesive law. International Journal of Solids and Structures, 2011, 48: 3326-3335
    31 Lee HK, Pyo SH. Multi-level modeling of e ective elastic behavior and progressive weakened interface in particulate composites. Composites Science and Technology, 2008, 68: 387-397
    32 Hong T. Sti ness properties of particulate composites containing debonded particles. International Journal of Solids and Structures,2010, 47: 2191-2200
    33 Mura T. Micromechanics of Defects in Solids. 2nd edn. Martinus Nijho Publishers, 1987
  • 期刊类型引用(10)

    1. 仪明哲,文路,梅红伟,曹彬,王黎明. 内水压试验对大吨位圆柱头瓷绝缘子杂质缺陷剔除有效性研究. 电工技术学报. 2025(05): 1614-1627 . 百度学术
    2. 鲁明远,韩保红,赫万恒,倪新华,于金凤. 孔隙对陶瓷基复合材料强度影响的研究进展. 材料导报. 2021(S1): 180-185 . 百度学术
    3. 吕从聪,卢晓春,熊勃勃,尹月明. 骨料-界面裂纹相互作用对混凝土开裂强度的影响. 应用力学学报. 2021(06): 2329-2337 . 百度学术
    4. 郭钊,郭子涛,易玲艳. 多裂纹问题计算分析的本征COD边界积分方程方法. 应用数学和力学. 2019(02): 200-209 . 百度学术
    5. 尹月明,李宗利,李东奇,吕从聪. 界面弧形裂纹对混凝土开裂强度的影响研究. 应用数学和力学. 2019(09): 1011-1024 . 百度学术
    6. 余文韬,黄佩珍. 应力诱发界面迁移下晶内孔洞的演化. 力学学报. 2018(04): 828-836 . 本站查看
    7. 朱振华,邵柏军,王俊,邵宇,陈建康,张明华. 老化对PP/SSFs导电复合材料结构及应力松弛性能的影响. 力学学报. 2018(03): 517-526 . 本站查看
    8. 李乐. 开裂孔隙材料渗透率的细观力学模型研究. 力学学报. 2018(05): 1032-1040 . 本站查看
    9. 古斌,郭宇立,李群. 基于构型力断裂准则的裂纹与夹杂干涉问题. 力学学报. 2017(06): 1312-1321 . 本站查看
    10. 付云伟,倪新华,刘协权,张龙,文波. 颗粒缺陷相互作用下复合材料的细观损伤模型. 力学学报. 2016(06): 1334-1342 . 本站查看

    其他类型引用(6)

计量
  • 文章访问数:  906
  • HTML全文浏览量:  93
  • PDF下载量:  758
  • 被引次数: 16
出版历程
  • 收稿日期:  2014-12-09
  • 修回日期:  2015-10-20
  • 刊出日期:  2016-01-17

目录

    /

    返回文章
    返回