EI、Scopus 收录
中文核心期刊

由多平衡态快子系统所诱发的簇发振荡及机理

陈章耀, 陈亚光, 毕勤胜

陈章耀, 陈亚光, 毕勤胜. 由多平衡态快子系统所诱发的簇发振荡及机理[J]. 力学学报, 2015, 47(4): 699-706. DOI: 10.6052/0459-1879-14-353
引用本文: 陈章耀, 陈亚光, 毕勤胜. 由多平衡态快子系统所诱发的簇发振荡及机理[J]. 力学学报, 2015, 47(4): 699-706. DOI: 10.6052/0459-1879-14-353
Chen Zhangyao, Chen Yaguang, Bi Qinsheng. BURSTING OSCILLATIONS AS WELL AS THE BIFURCATION MECHANISM INDUCED BY FAST SUBSYSTEM WITH MULTIPLE BALANCES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4): 699-706. DOI: 10.6052/0459-1879-14-353
Citation: Chen Zhangyao, Chen Yaguang, Bi Qinsheng. BURSTING OSCILLATIONS AS WELL AS THE BIFURCATION MECHANISM INDUCED BY FAST SUBSYSTEM WITH MULTIPLE BALANCES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4): 699-706. DOI: 10.6052/0459-1879-14-353
陈章耀, 陈亚光, 毕勤胜. 由多平衡态快子系统所诱发的簇发振荡及机理[J]. 力学学报, 2015, 47(4): 699-706. CSTR: 32045.14.0459-1879-14-353
引用本文: 陈章耀, 陈亚光, 毕勤胜. 由多平衡态快子系统所诱发的簇发振荡及机理[J]. 力学学报, 2015, 47(4): 699-706. CSTR: 32045.14.0459-1879-14-353
Chen Zhangyao, Chen Yaguang, Bi Qinsheng. BURSTING OSCILLATIONS AS WELL AS THE BIFURCATION MECHANISM INDUCED BY FAST SUBSYSTEM WITH MULTIPLE BALANCES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4): 699-706. CSTR: 32045.14.0459-1879-14-353
Citation: Chen Zhangyao, Chen Yaguang, Bi Qinsheng. BURSTING OSCILLATIONS AS WELL AS THE BIFURCATION MECHANISM INDUCED BY FAST SUBSYSTEM WITH MULTIPLE BALANCES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4): 699-706. CSTR: 32045.14.0459-1879-14-353

由多平衡态快子系统所诱发的簇发振荡及机理

基金项目: 国家自然科学基金项目(20976075, 11472115, 11302136, 11472116) 和镇江市工业支撑项目(GY2013032, GY2013052) 资助.
详细信息
    通讯作者:

    陈章耀, 副教授, 主要研究方向:非线性动力学. E-mail:zychen@ujs.edu.cn

  • 中图分类号: O322

BURSTING OSCILLATIONS AS WELL AS THE BIFURCATION MECHANISM INDUCED BY FAST SUBSYSTEM WITH MULTIPLE BALANCES

Funds: The project was supported by the National Natural Science Foundation of China (20976075, 11472115, 11302136, 11472116) and the Scientific and Technological Foundation of Zhenjiang, China (GY2013032, GY2013052).
  • 摘要: 通过引入子电路模块, 并选取适当的参数及非线性电阻特性, 建立了多时间尺度下具有多平衡态的四维广义哈特利(Hartley) 电路模型. 基于快子系统的多平衡态及其稳定性, 给出了参数空间的分岔集, 得到了不同区域中的动力学特性及其相应的分岔模式和临界条件. 针对两种典型具有不同分岔特征的情形, 分别给出了多平衡态参与下的两种不同的周期簇发振荡行为, 结合快子系统的分岔分析, 揭示了沉寂态和激发态之间相互转化的产生机制, 指出多平衡态不仅会导致多种沉寂态和激发态同时参与同一周期簇发振荡, 也会导致簇发振荡模式的多样性.
    Abstract: By introducing subcircuit module and taking suitable values for the parameters as well as the characteristics of the nonlinear resistance, a four-dimensional generalized Hartley model whose fast subsystem has multiple balances is established. Based on the multiple balances as well as stabilities of the fast subsystem, bifurcation sets are derived, which divide the parameter space into different regions. In each region, nonlinear dynamical behaviors as well as the bifurcation patterns corresponding to different critical conditions are obtained. Two typical cases with different bifurcations are investigated, in which two different bursting oscillations with multiple balances of the fast subsystem involved are presented. Combining with the bifurcation analysis of the fast subsystem, the mechanism of the alternation between quiescent state and the spiking state is explored, which reveals that multiple balances of the fast subsystem not only may cause multiple quiescent states and spiking states to involve a periodic burster simultaneously, but also may lead to the multiplicity of patterns of bursting oscillations.
  • Theodosiou C, Sikelis K, Natsiavas S. Periodic steady state response of large scale mechanical models with local nonlinearities. Int J Solids Struct, 2009, 46(20): 3565-3576
    Bi QS. The mechanism of bursting phenomena in Belousov-Zhabotinsky(BZ) chemical reaction with multiple time scale. Sci China-Technol Sci, 2010, 53(3): 748-760
    Yang ZQ, Lu QS, Li L. The genesis of period-adding bursting without bursting-chaos in the Chay model. Chaos Solitons Fractals, 2006, 27(3): 689-697
    Wang HX, Lu QS, Wang QY. Bursting and synchronization transition in the coupled modified ML neurons. Commun Nonlinear Sci, 2008, 13(8): 1668-1675
    陈章耀, 张晓芳, 毕勤胜. 周期激励下Hartley模型的簇发及其分岔机制. 力学学报, 2010, 42(4): 765-773 (Chen Zhangyao, Zhang Xiaofang, Bi Qinsheng. Bursting phenomena as well as the bifurcation mechanism in periodically excited Hartley model. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(4): 765-773 (in Chinese))
    Abobda LT, Woafo P. Subharmonic and bursting oscillations of a ferromagnetic mass fixed on a spring and subjected to an AC electromagnet. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(7): 3082-3091
    张正娣, 毕勤胜. 自激作用下洛伦兹振子的簇发现象及其分岔机制. 中国科学: 物理学力学天文学, 2013, 43(4): 511-517 ( Zhang Zhendi, Bi Qinsheng. Bursting phenomenon as well as the bifurcation mechanism of self-excited Lorenz system. Sci Sin-Phys Mech Astron, 2013, 43(4): 511-517 (in Chinese))
    Wang HX, Wang QY, Lu QS. Bursting oscillations, bifurcation and synchronization in neuronal systems. Chaos Solitons Fractals, 2011, 44(8): 667-675
    陈章耀, 毕勤胜. 非线性电路的簇发现象及其分岔机制. 控制理论与应用, 2011, 28(10): 1413-1420 (Chen Zhangyao, Bi Qinsheng. Bursting phenomena as well as bifurcation mechanism in nonlinear circuit. Control Theory & Applications, 2011, 28(10): 1413-1420 (in Chinese))
    Shen JH, Zhou ZY. Fast-slow dynamics in logistic models with slowly varying parameters. Commun Nonlinear Sci Numer Simul, 2013, 18(8): 2213-2221
    Perc M, Marhl M. Different types of bursting calcium oscillations in non-excitable cells. Chaos Solitons and Fractals, 2003, 18(4): 759-773
    Simo H, Woafo P. Bursting oscillations in electromechanical systems. Mechanics Research Communications. 2011, 38(8): 537-547
    Han XJ, Jiang B, Bi QS. Symmetric bursting of focus-focus type in the controlled Lorenz system with two time scales. Physics Letters A, 2009, 373(40): 3643-3649
    Bi QS, Zhang ZD. Bursting phenomena as well as the bifurcation mechanism in controlled Lorenz oscillation with two scales. Physics Letters A, 2011, 375(8): 1183-1190
    杨卓琴, 张璇. 3个不同时间尺度的电耦合模型的组合簇放电. 物理学报, 2013, 62 (17): 1705081-1705088 (Yan Zhuoqin, Zhang Xuan. Compound bursting in an electrical coupling model with three different time scales. Acta Phys Sin, 2013, 62(17): 1705081-1705088 (in Chinese))
    Kingni ST, Keuninckx L, Woafo P, et al. Dissipative chaos, Shilnikov chaos and bursting oscillations in a three-dimensional autonomous system: theory and electronic implementation. Nonlinear Dynamics, 2013, 73(1-2): 1111-1123
    Hartley TT, Monssayebi F. Matrix integrators for real-time simulation of singular systems. In: Proc of Amer Control Conf, Ptiisburgh, USA, 1989. 419-423
    Kuzenetsov YA. Elements of Applied Bifurcation Theory. 2nd ed, New York: Springer-Verlag, 1998. 265-277
    陈予恕. 非线性振动系统的分岔和混沌理论. 北京: 高等教育出版社, 1993
    Han XJ, Bi QS. Bursting oscillations in Duffing's equation with slowly changing external forcing. Commun Nonlinear Sci Numer Simul, 2011, 16(8): 4146-4152
计量
  • 文章访问数:  1035
  • HTML全文浏览量:  113
  • PDF下载量:  676
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-15
  • 修回日期:  2015-04-19
  • 刊出日期:  2015-07-17

目录

    /

    返回文章
    返回