EI、Scopus 收录
中文核心期刊

高温仪器化压入测试中热接触对位移测量漂移的影响

陈克, 冯义辉, 彭光健, 张泰华

陈克, 冯义辉, 彭光健, 张泰华. 高温仪器化压入测试中热接触对位移测量漂移的影响[J]. 力学学报, 2015, 47(2): 270-278. DOI: 10.6052/0459-1879-14-297
引用本文: 陈克, 冯义辉, 彭光健, 张泰华. 高温仪器化压入测试中热接触对位移测量漂移的影响[J]. 力学学报, 2015, 47(2): 270-278. DOI: 10.6052/0459-1879-14-297
Chen Ke, Feng Yihui, Peng Guangjian, Zhang Taihua. THERMAL CONTACT-INDUCED DISPLACEMENT DRIFT INHIGH-TEMPERATURE NANOINDENTATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2): 270-278. DOI: 10.6052/0459-1879-14-297
Citation: Chen Ke, Feng Yihui, Peng Guangjian, Zhang Taihua. THERMAL CONTACT-INDUCED DISPLACEMENT DRIFT INHIGH-TEMPERATURE NANOINDENTATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2): 270-278. DOI: 10.6052/0459-1879-14-297
陈克, 冯义辉, 彭光健, 张泰华. 高温仪器化压入测试中热接触对位移测量漂移的影响[J]. 力学学报, 2015, 47(2): 270-278. CSTR: 32045.14.0459-1879-14-297
引用本文: 陈克, 冯义辉, 彭光健, 张泰华. 高温仪器化压入测试中热接触对位移测量漂移的影响[J]. 力学学报, 2015, 47(2): 270-278. CSTR: 32045.14.0459-1879-14-297
Chen Ke, Feng Yihui, Peng Guangjian, Zhang Taihua. THERMAL CONTACT-INDUCED DISPLACEMENT DRIFT INHIGH-TEMPERATURE NANOINDENTATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2): 270-278. CSTR: 32045.14.0459-1879-14-297
Citation: Chen Ke, Feng Yihui, Peng Guangjian, Zhang Taihua. THERMAL CONTACT-INDUCED DISPLACEMENT DRIFT INHIGH-TEMPERATURE NANOINDENTATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2): 270-278. CSTR: 32045.14.0459-1879-14-297

高温仪器化压入测试中热接触对位移测量漂移的影响

基金项目: 国家自然科学基金资助项目(11025212, 11272318, 11302231 和11402233).
详细信息
    通讯作者:

    张泰华,教授级高工,主要研究方向:微/纳米力学测试技术和性能表征.E-mail:zhangth@zjut.edu.cn

  • 中图分类号: O348.3

THERMAL CONTACT-INDUCED DISPLACEMENT DRIFT INHIGH-TEMPERATURE NANOINDENTATION

Funds: The project was supported by the National Natural Science Foundation of China (11025212, 11272318, 11302231, 11402233).
  • 摘要: 基于对室温压头和热试样接触后传热过程的分析, 重点研究热接触引起的压头基托热膨胀对高温仪器化压入测试中位移测量漂移的影响. 首先, 通过热传导理论分析, 获得热接触后基托内温度场分布的解析解, 进而研究基托热膨胀引起的位移测量漂移量; 然后, 建立有限元分析模型, 数值模拟高温仪器化压入过程, 验证理论模型的准确性. 研究发现, 压头与热试样接触面间的热传导性质显著影响基托内的温度场分布; 对于不同材料的试样, 接触面间传热性能不同, 基托的热膨胀量差异可以达到几个数量级. 研究结果有助于优化高温压入测试程序, 提高测试的可靠性.
    Abstract: Based on the analysis of heat transfer between indenter at room temperature and hot sample during their contact, this paper mainly studies the influence of thermal contact-induced expansion of the indenter holder on the displacement measurement in high-temperature instrumented nanoindentation. First of all, we derive an analytical solution of temperature distribution of the holder from the basic theory of heat conduction by appropriately simplifying the analysis model of hot nanoindentation, and use it to study the additional displacement caused by thermal expansion. Secondly, a finite element model (FEM) is established to investigate the thermal expansion-induced drift in hot nanoindentation to verify the analytical solution. It is found that the contact thermal properties between indenter and hot sample may significantly affect the distribution of temperature in holder. The thermal contact conductance between indenter and test sample varies from material to material, which can lead to the difference of several orders of magnitude of holder's thermal expansion. The research results may help to optimize the test program and improve the reliability of high-temperature instrumented nanoindentation.
  • 张泰华. 微/纳米力学测试技术及其应用——仪器化压入的测量、分析、应用及其标准化.北京: 科学出版社, 2013 (Zhang Taihua. Micro/nano-mechanics Testing Technology and Its Application —— Measurement, Analysis, Application and Standardization of Instrumented Indentation. Beijing: Science Press, 2013 (in Chinese))
    Schuh CA, Packard CE, Lund AC. Nanoindentation and contact-mode imaging at high temperatures. Journal of Materials Research, 2006, 21(efeq3):725-736
    Trenkle JC, Packard CE, Schuh CA. Hot nanoindentation in inert environments. Review of Scientific Instruments, 2010, 81(7): 073901
    Lee H, Chen Y, Claisse A, et al. Finite element simulation of hot nanoindentation in vacuum. Experimental Mechanics, 2013, 53(efeq7):1201-1211
    Everitt NM, Davies MI, Smith JF. High temperature nanoindentation ——- the importance of isothermal contact. Philosophical Magazine A-Physics of Condensed Matter Structure Defects and Mechanical Properties, 2011, 91(7-9):1221-1244
    Guillonneau G, Kermouche G, Bec S, et al. A simple method to minimize displacement measurement uncertainties using dynamic nanoindentation testing. Tribology International, 2014, 70:190-198
    Korte S, Stearn RJ, Wheeler JM, et al. High temperature microcompression and nanoindentation in vacuum. Journal of Materials Research, 2012, 27(01): 167-176
    Wheeler JM, Michler J. Elevated temperature, nano-mechanical testing in situ in the scanning electron microscope. Review of Scientific Instruments, 2013, 84(efeq4): 045103
    Wheeler JM, Brodard P, Michler J. Elevated temperature, in situ indentation with calibrated contact temperatures. Philosophical Magazine, 2012, 92(25-27):3128-3141
    Wheeler JM, Michler J. Invited Article: Indenter materials for high temperature nanoindentation. Review of Scientific Instruments, 2013, 84(efeq10):101301
    谈庆明.量纲分析.合肥: 中国科学技术大学出版社, 2005 (Tan Qingming. DimensionalAnalysis. Hefei: University of Science and Technology of China Press, 2005 (in Chinese))
    Cui JB, Amtmann K, Ristein J, et al. Noncontact temperature measurements of diamond by Raman scattering spectroscopy. Journal of Applied Physics, 1998, 83(12): 7929-7933
    Beake BD, Smith JF. High-temperature nanoindentation testing of fused silica and other materials. Philosophical Magazine A, 2002, 82(10): 2179-2186
    岳丹婷. 工程热力学和传热学. 大连: 大连海事大学出版社, 2009 (Yue Danting. Engineering Thermodynamics and Heat Transfer. Dalian: Dalian Maritime University Press, 2009 (in Chinese))
    Chrobak D, Kim KH, Kurzydlowski KJ, et al. Nanoindentation experiments with different loading rate distinguish the mechanism of incipient plasticity. Applied Physics Letters, 2013, 103(7): 072101
    Micro Star Technologies. http://www.microstartech.com
    Bhakhri V, Wang J, Ur-rehman N, et al. Instrumented nanoindentation investigation into the mechanical behavior of ceramics at moderately elevated temperatures. Journal of Materials Research, 2012, 27(1): 64-74
    Carderelli F. Materials Handbook: A Concise Desktop Reference. New York: Springer, 2008
    Korte S, Clegg WJ. Micropillar compression of ceramics at elevated temperatures. Scripta Materialia, 2009, 60(9): 807-810
    Agilent Technologies. Localized high temperature stage user's guide .Part number G2A-13192-© Agilent Technologies, Inc. 201
    Abuzeida OM, Alnumanb N. Thermal contact conductance of elastically deforming nominally flat surfaces using fractal geometry. Industrial Lubrication and Tribology , 2013, 65(efeq6): 390-398
    Persson BNJ, Lorenz B, Volokitin AI. Heat transfer between elastic solids with randomly rough surfaces. European Physical Journal E, 2010, 31(efeq1): 3-24
    Bahrami M, Culham JR, Yananovich MM, et al. Review of thermal joint resistance models for nonconforming rough surfaces. Applied Mechanics Reviews, 2006, 59(1-6):1-12
    Johnson KL. Contact Mechanics. Cambridge :Cambridge University Press, 1985
    Crank J. The Mathematics of Diffusion. Clarendon: Oxford, 1979
    David WH, Necati OM. Heat Conduction. John Wiley and Sons, 1979
    Adelbert Phillo Mills. Materials of Construction: Their Manufacture and Properties. John Wiley and Sons, 1979
    Vin Karola. http://www.vinkarola.com/pdf. © Vin Karola Instruments, 2003
    http://www.azom.com/article.aspx?ArticleID=6652,2014.08.08
    Material Properties Database. http://www.makeitfrom.com,2014.08.08
计量
  • 文章访问数:  1089
  • HTML全文浏览量:  88
  • PDF下载量:  734
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-25
  • 修回日期:  2014-12-24
  • 刊出日期:  2015-03-17

目录

    /

    返回文章
    返回