EI、Scopus 收录
中文核心期刊

强激光水下爆炸推进的物理机制

吴先前, 王一伟, 黄晨光

吴先前, 王一伟, 黄晨光. 强激光水下爆炸推进的物理机制[J]. 力学学报, 2015, 47(4): 687-698. DOI: 10.6052/0459-1879-14-253
引用本文: 吴先前, 王一伟, 黄晨光. 强激光水下爆炸推进的物理机制[J]. 力学学报, 2015, 47(4): 687-698. DOI: 10.6052/0459-1879-14-253
Wu Xianqian, Wang Yiwei, Huang Chenguang. PHYSICS OF LASER PROPULSION UNDERWATER: EXPERIMENTS AND MODELING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4): 687-698. DOI: 10.6052/0459-1879-14-253
Citation: Wu Xianqian, Wang Yiwei, Huang Chenguang. PHYSICS OF LASER PROPULSION UNDERWATER: EXPERIMENTS AND MODELING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4): 687-698. DOI: 10.6052/0459-1879-14-253
吴先前, 王一伟, 黄晨光. 强激光水下爆炸推进的物理机制[J]. 力学学报, 2015, 47(4): 687-698. CSTR: 32045.14.0459-1879-14-253
引用本文: 吴先前, 王一伟, 黄晨光. 强激光水下爆炸推进的物理机制[J]. 力学学报, 2015, 47(4): 687-698. CSTR: 32045.14.0459-1879-14-253
Wu Xianqian, Wang Yiwei, Huang Chenguang. PHYSICS OF LASER PROPULSION UNDERWATER: EXPERIMENTS AND MODELING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4): 687-698. CSTR: 32045.14.0459-1879-14-253
Citation: Wu Xianqian, Wang Yiwei, Huang Chenguang. PHYSICS OF LASER PROPULSION UNDERWATER: EXPERIMENTS AND MODELING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4): 687-698. CSTR: 32045.14.0459-1879-14-253

强激光水下爆炸推进的物理机制

基金项目: 国家自然科学基金资助项目(11402277, 11332011, 11202215).
详细信息
    通讯作者:

    黄晨光, 研究员, 主要研究方向: 冲击动力学、激光与物质的相互作用以及结构动力学. E-mail: huangcg@imech.ac.cn

  • 中图分类号: O38

PHYSICS OF LASER PROPULSION UNDERWATER: EXPERIMENTS AND MODELING

Funds: The project was supported by the National Natural Science Foundation of China (11402277, 11332011, 11202215).
  • 摘要: 对激光水下聚焦爆炸推进的作用机理开展了实验测量和数值模拟研究. 实验观察到激光水下聚焦爆炸推进分为两个物理过程: (1) 强激光与铝膜相互作用诱导等离子体演化, 产生短脉冲、高幅值的等离子体压力, 并对航行体做功; (2) 激光爆炸产物气泡脉动, 对航行体继续提供推力. 另外, 实验还对不同介质中的激光推进效率以及气泡与约束壁面/自由水面相互作用的物理机制进行了研究. 发现在高阻抗环境介质、气泡受约束脉动以及近自由水面条件下, 激光爆炸推进的效率更高. 在实验的基础上, 建立了激光水下聚焦爆炸推进的物理模型, 发展了相应的耦合数值计算方法. 计算得到的气泡脉动规律及航行体运动规律与实验测量结果一致, 验证了计算的模型和方法, 为强激光水下聚焦爆炸推进机理的研究提供了一种有效的方法.
    Abstract: In the present research, physics of laser propulsion underwater was investigated by experiments and numerical simulation. Two physical processes of laser propulsion were observed in experiments. One is laser-matter interaction during laser irradiating propelled object, in which the laser induced plasma with short duration and high amplitude was generated. The object was propelled under the pressure of plasma. Another is bubble pulsation after the annihilation of plasma, resulting in the movement of object under bubble pressure with relative long duration. In addition, high speed of object was also observed for high impedance medium around the object and for propulsion near free surface of water. Based on the experiments, a physical model as well as simulation method were developed, by which the characteristics of laser propulsion underwater, including applied pressure and resistance histories, laser induced bubble pulsation, etc. were obtained. The simulated results agreed well with experiments, providing a valuable insight into the physics of laser propulsion underwater.
  • Han B, Shen ZH, Lu J, et al. Numerical study of water-confinement geometries for laser propulsion. Optics and Lasers in Engineering, 2010, 48(10): 950-957
    Zheng Z, Zhang J, Zhang Y, et al. Enhancement of coupling coefficient of laser plasma propulsion by water confinement. Applied Physics A, 2006, 85(4): 441-443
    Zhang ZY, Zhang Y, Zhou WG, et al. High coupling efficiency generation in water confined laser plasma propulsion. Chinese Physics Letters, 2007, 24(2): 501
    Wu X, Duan Z, Song H, et al. Shock pressure induced by glass-confined laser shock peening: Experiments, modeling and simulation. Journal of Applied Physics, 2011, 110(5): 053112
    Wu X, Huang C, Wang X, et al. A new effective method to estimate the effect of laser shock peening. International Journal of Impact Engineering, 2011, 38(5): 322-329
    吴先前, 段祝平, 黄晨光等. 激光冲击强化过程中蒸气等离子体压力计算的耦合模型. 爆炸与冲击, 2012, 32(1): 1-7 (Wu Xianqian, Duan Zhuping, Huang Chenguang, et al. A new coupling analytical method for plasma pressure induced by laser shock peening. Explosion and Shock Waves, 2012, 32(1): 1-7 (in Chinese))
    库尔. 水下爆炸. 北京: 国防工业出版社, 1960 (Cole RH. Underwater Explosion. Beijing: National Defence Industry Press, 1960 (in Chinese))
    姚熊亮, 张阿漫. 简单 Green 函数法模拟三维水下爆炸气泡运动. 力学学报, 2006, 38(6): 749-759 (Yao Xiongliang, Zhang Aman. Simulation of the motion of three-dimensional underwater explosion bubble using simple Green function method. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(6): 749-759 (in Chinese))
    Cui C, Hong Y, Ye J, et al. Effects of laser energy density on impulse coupling coefficient of laser ablation of water for propulsion. Applied Physics A, 2011, 103(1): 239-243
    Phipps C, Birkan M, Bohn W, et al. Review: laser-ablation propulsion. Journal of Propulsion and Power, 2010, 26(4): 609-637
    李修乾, 洪延姬, 何国强等. 激光推进器概念设计研究现状及发展趋势, 强激光与粒子束, 2005, 17(3): 363-368 (Li Xiuqian, Hong Yanji, He Guoqiang, et al. Status and development trend of concept studies on laser propulsion thruster. High Power Laser and Particle Beams, 2005, 17(3): 363-368 (in Chinese))
    Yabe T, Ohzono H, Ohkubo T, et al. Proposal of liquid cannon target driven by fiber laser for micro-thruster in satellite. In: Beamed Energy Propulsion: Second International Symposium on Beamed Energy Propulsion, AIP Publishing, 2004, 503-512
    蔡建, 王彬, 胡晓军等. 激光水推进技术的实验研究. 实验力学, 2007, 22(1): 43-48 (Cai Jian, Wang Bin, Hu Xiaojun, et al. Experimental study of laser propulsion underwater. Journal of Experimental Mechanics, 2007, 22(1): 43-48 (in Chinese))
    唐志平. 烧蚀模式激光推进的机理和应用探索. 中国科学技术大学学报, 2008, 37(10): 1300-1305 (Tang Zhiping. Exploration of mechanism and applications for ablation laser propulsion. Journal of University of Science and Technology of China, 2008, 37(10): 1300-1305 (in Chinese))
    王彬, 唐志平, 蔡建等. 激光水推进的机理研究及参数优化, 推进技术, 2007, 28(5): 586-589 (Wang Bin, Tang Zhiping, Cai Jian, et al. Mechanism for water-powered laser propulsion. Journal of Propulsion Technology, 2007, 28(5): 586-589 (in Chinese))
    Sinko J, Kodgis L, Porter S, et al. An analysis of force generation in TEA CO2 laser ablation of liquids. In: High-Power Laser Ablation 2006, International Society for Optics and Photonics, 2006, 62611W-62611W-62612
    Sinko JE, Dhote NB, Pakhomov AV. Laser propulsion with liquid propellants Part II: thin films. In: Beamed Energy Propulsion: Fifth International Symposium on Beamed Energy Propulsion, AIP Publishing, 2008, 209-221
    Sinko JE, Pakhomov AV. Laser propulsion with liquid propellants Part I: an overview. In: Beamed Energy Propulsion: Fifth International Symposium on Beamed Energy Propulsion, AIP Publishing, 2008, 195-208
    Sterling E, Pakhomov AV, Larson CW, et al. Absorption-enhanced liquid ablatants for propulsion with TEA CO2 laser. In: Beamed Energy Propulsion: Third International Symposium on Beamed Energy Propulsion, AIP Publishing, 2005, 474-481
    Zheng ZY, Zhang J, Hao ZQ, et al. Paper airplane propelled by laser plasma channels generated by femtosecond laser pulses in air. Optics Express, 2005, 13(26): 10616-10621
    Zheng ZY, Zhang J, Hao ZQ, et al. The characteristics of confined ablation in laser propulsion. Chinese Physics, 2006, 15(3): 580
    张翼, 鲁欣, 郑志远等. 透射式水工质的高耦合效率激光推进模式, 推进技术, 2007, 28(5): 534-537 (Zhang Yi, Lu Xin, Zheng Zhiyuan, et al. High coupling coefficient laser propulsion mode. Journal of Propulsion Technology, 2007, 28(5): 534-537 (in Chinese))
    郑哲敏, 杨振声. 爆炸加工. 北京: 国防工业出版社, 1981 (Zheng Zhemin, Yang Zhensheng. Explosive Working. Beijing: National Defence Industry Press, 1981 (in Chinese))
    Peyre P, Berthe L, Fabbro R, et al. Experimental determination by PVDF and EMV techniques of shock amplitudes induced by 0.6-3 ns laser pulses in a confined regime with water. Journal of Physics D: Applied Physics, 2000, 33: 498-503
    Fabbro R, Fournier J, Ballard P, et al. Physical study of laser-produced plasma in confined geometry. Journal of Applied Physics, 1990, 68: 775-784
    Wu X, Tan Q, Huang C. Geometrical scaling law for laser shock processing. Journal of Applied Physics, 2013, 114(4): 043105
    Hilgenfeldt S, Brenner MP, Grossmann S, et al. Analysis of Rayleigh-Plesset dynamics for sonoluminescing bubbles. Journal of Fluid Mechanics, 1998, 365: 171-204
    Brennen CE. Cavitation and Bubble Dynamics, Oxford University Press, USA, 1995
    Lauterborn W, Kurz T. Physics of bubble oscillations, Reports on Progress in Physics, 2010, 73: 106501
    Plesset MS, Prosperetti A. Bubble dynamics and cavitation. Annual Review of Fluid Mechanics, 1977, 9(1): 145-185
计量
  • 文章访问数:  1364
  • HTML全文浏览量:  124
  • PDF下载量:  1404
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-28
  • 修回日期:  2014-12-30
  • 刊出日期:  2015-07-17

目录

    /

    返回文章
    返回