EI、Scopus 收录
中文核心期刊

悬浮态上皮细胞粘附的力学-化学耦合模型及数值模拟

冯世亮, 周吕文, 吕守芹, 龙勉

冯世亮, 周吕文, 吕守芹, 龙勉. 悬浮态上皮细胞粘附的力学-化学耦合模型及数值模拟[J]. 力学学报, 2020, 52(3): 854-863. DOI: 10.6052/0459-1879-20-011
引用本文: 冯世亮, 周吕文, 吕守芹, 龙勉. 悬浮态上皮细胞粘附的力学-化学耦合模型及数值模拟[J]. 力学学报, 2020, 52(3): 854-863. DOI: 10.6052/0459-1879-20-011
Feng Shiliang, Zhou Lüwen, Lü Shouqin, Long Mian. MECHANOCHEMICAL COUPLING MODEL AND NUMERICAL SIMULATION FOR CELL-CELL ADHESION IN SUSPENDED EPITHELIAL CELLS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 854-863. DOI: 10.6052/0459-1879-20-011
Citation: Feng Shiliang, Zhou Lüwen, Lü Shouqin, Long Mian. MECHANOCHEMICAL COUPLING MODEL AND NUMERICAL SIMULATION FOR CELL-CELL ADHESION IN SUSPENDED EPITHELIAL CELLS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 854-863. DOI: 10.6052/0459-1879-20-011
冯世亮, 周吕文, 吕守芹, 龙勉. 悬浮态上皮细胞粘附的力学-化学耦合模型及数值模拟[J]. 力学学报, 2020, 52(3): 854-863. CSTR: 32045.14.0459-1879-20-011
引用本文: 冯世亮, 周吕文, 吕守芹, 龙勉. 悬浮态上皮细胞粘附的力学-化学耦合模型及数值模拟[J]. 力学学报, 2020, 52(3): 854-863. CSTR: 32045.14.0459-1879-20-011
Feng Shiliang, Zhou Lüwen, Lü Shouqin, Long Mian. MECHANOCHEMICAL COUPLING MODEL AND NUMERICAL SIMULATION FOR CELL-CELL ADHESION IN SUSPENDED EPITHELIAL CELLS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 854-863. CSTR: 32045.14.0459-1879-20-011
Citation: Feng Shiliang, Zhou Lüwen, Lü Shouqin, Long Mian. MECHANOCHEMICAL COUPLING MODEL AND NUMERICAL SIMULATION FOR CELL-CELL ADHESION IN SUSPENDED EPITHELIAL CELLS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 854-863. CSTR: 32045.14.0459-1879-20-011

悬浮态上皮细胞粘附的力学-化学耦合模型及数值模拟

基金项目: 1)国家自然科学基金资助项目(11502272, 11972200)
详细信息
    通讯作者:

    2)冯世亮, 讲师, 研究方向: 细胞-分子力学, 植物力学. E-mail: fengshiliang@nbu.edu.cn

  • 中图分类号: Q615

MECHANOCHEMICAL COUPLING MODEL AND NUMERICAL SIMULATION FOR CELL-CELL ADHESION IN SUSPENDED EPITHELIAL CELLS

  • 摘要: 上皮细胞通过局部募集上皮性钙粘附蛋白 (E-cadherin) 建立胞间粘着连接, 实验证实该过程受到肌球蛋白皮层张力的调控. 为了从系统层面阐明粘着连接形成动力学过程, 本文考察皮层张力调控肌动蛋白 (F-actin) 解聚从而参与E-cadherin级联转导, 同时以马达-离合器机制模拟两细胞相互作用, 据此构建可反映悬浮态细胞粘附的力学-化学耦合数学模型; 对整体包含随机点源的非线性反应-扩散方程组与平衡微分方程耦合系统采取了自行发展的格子Boltzmann-粒子法与蒙特-卡洛法数值求解. 数值模拟表明, 由收缩性肌球蛋白 (myosin-II) 拉动胞间E-cadherin成键可提升皮层张力, 进而降低F-actin解聚速率﹑锚定更多的E-cadherin; 所构成的力学反馈回路展现出时空效应, 可帮助E-cadherin在接触区建立初始极性; E-cadherin形成顺式二聚体则将初始极性放大, 导致接触区E-cadherin展现起始、快速增长及慢速增长的积聚动力学特征. 皮层呈松散结构时刚度较小, 可通过延长胞间E-cadherin成键寿命提升张力, 而接触区弧度适中时($\approx$1.2 rad) E-cadherin峰值最高; 两者可分别作为启动力学反馈回路及调控粘着连接成熟度的有效手段.
    Abstract: Epithelial cells develop adherens junctions via local recruitment of a transmembrane receptor, named E-cadherin, whose activity is dependent on Ca$^{2+}$ signal. Growing evidences indicate the importance of tensile forces within actomyosin cortex, yet a system-level understanding for the mechanosensitive responses of cell-cell contacts remains unclear. Here, we constructed a mechanochemical coupling model, in which the tensile forces presented at adherens junctions participated in the interactions between myosin contractility, actin dynamics and local E-cadherin recruitment, which together, formed a mechanical feedback loop (MFL). The mechanical interactions between a pair of epithelial cells were treated by a motor-clutch mechanism. The in-house developed lattice-Boltzmann particle (LBP)-D1Q3 method, which had been embedded with a simple Monte-Carlo method, was adopted to solve the coupled nonlinear reaction-diffusion equations, which had stochastic reaction terms, and were coupled with the equilibrium differential equation. The numerical simulation results indicate that the spatiotemporal effects of MFL may arise an initial anisotropy in the distribution pattern of E-cadherin, which could be further amplified by "cis" interactions between E-cadherins from the same cell surface. The model thus confirms three distinct phases in the profile of E-cadherin accumulation at the center of contact zone, which are initial, rapid increase, and slowly increase, as observed experimentally. Furthermore, local recruitment of E-cadherin can be mechanically regulated by either the elastic modulus of actomyosin cortex or the extent of cell-cell contact, whereupon the highest E-cadherin density takes place at 1.2 rad. Accordingly, decreasing the elastic modulus of actomyosin cortex may thus act as a triggering mechanism for MFL while the length of cell-cell contact is denoted as a controller of the maturity of adherens junctions.
  • Manibog K, Li H, Rakshit S, et al.Resolving the molecular mechanism of cadherin catch bond formation. Nature Communications, 2014, 5: 1-11
    Pan Y, Heemskerk I, Ibar C, et al.Differential growth triggers mechanical feedback that elevates Hippo signaling. Proceedings of the National Academy of Sciences, 2016, 113(45): E6974
    Braga V.Spatial integration of E-cadherin adhesion, signalling and the epithelial cytoskeleton. Current Opinion in Cell Biology, 2016, 42: 138-145
    Wu Y, Jin X, Harrison O, et al.Cooperativity between trans and cis interactions in cadherin-mediated junction formation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(41): 17592-17597
    Dufour S, Mège RM, Thiery JP.$\alpha $-catenin, vinculin, and F-actin in strengthening E-cadherin cell--cell adhesions and mechanosensing. Cell Adhesion & Migration, 2013, 7(4): 345-350
    Mccormack J, Welsh NJ, Braga VMM.Cycling around cell-cell adhesion with Rho GTPase regulators. Journal of Cell Science, 2013, 126(2): 379-391
    Yamada S, Nelson WJ.Localized zones of Rho and Rac activities drive initiation and expansion of epithelial cell cell adhesion. The Journal of Cell Biology, 2007, 178(3): 517-527
    Liang X, Gomez GA, Yap SY.Current perspectives on cadherin-cytoskeleton interactions and dynamics. Cell Health and Cytoskeleton, 2015, 7: 11-24
    Leerberg J, Gomez G, Verma S, et al.Tension-sensitive actin assembly supports contractility at the epithelial zonula adherens. Current Biology, 2014, 24(15): 1689-1699
    Lecuit T, Yap AS.E-cadherin junctions as active mechanical integrators in tissue dynamics. Nature Cell Biology, 2015, 17(5): 533-539
    Murrell MP, Gardel ML.F-actin buckling coordinates contractility and severing in a biomimetic actomyosin cortex. Proceedings of the National Academy of Sciences, 2012, 109(51): 20820-20825
    Wu SK, Gomez GA, Michael M, et al.Cortical F-actin stabilization generates apical--lateral patterns of junctional contractility that integrate cells into epithelia. Nature Cell Biology, 2014, 16(2): 167-178
    Engl W, Arasi B, Yap LL, et al.Actin dynamics modulate mechanosensitive immobilization of E-cadherin at adherens junctions. Nature Cell Biology, 2014, 16(6): 587-594
    Chu YS, William A, Thomas WA, et al.Force measurements in E-cadherin-mediated cell doublets reveal rapid adhesion strengthened by actin cytoskeleton remodeling through Rac and Cdc42. The Journal of Cell Biology, 2004, 167(6): 1183-1194
    Chan CE, Odde DJ.Traction dynamics of filopodia on compliant substrates. Science, 2008, 322(5908): 1687-1691
    Carlier MF, Shekhar S.Global treadmilling coordinates actin turnover and controls the size of actin networks. Nature Reviews Molecular Cell Biology, 2017, 18: 389-401
    Mogilner A, Edelstein-Keshet L.Regulation of actin dynamics in rapidly moving cells: A quantitative analysis. Biophysical Journal, 2002, 83(3): 1237-1258
    Feng SL, Zhou LW, Yan Z, et al.Mechanochemical modeling of neutrophil migration based on four signaling layers, integrin dynamics, and substrate stiffness. Biomechanics and Modeling in Mechanobiology, 2018, 17(6): 1611-1630
    Pal TK, Soni RS, Datta D.Lattice Boltzmann simulation to study reaction diffusion processes in geological media. Barc Newsletter, 2015: 6-13
    Feng SL, Zhu WP.Bidirectional molecular transport shapes cell polarization in a two-dimensional model of eukaryotic chemotaxis. Journal of Theoretical Biology, 2014, 363: 235-246
    Feng SL, Zhou LW, Zhang Y, et al.Dynamic seesaw model for rapid signaling responses in eukaryotic chemotaxis. Physical Biology, 2018, 15(5): 1478-3967
    Bangasser B, Rosenfeld S, Odde D.Determinants of maximal force transmission in a motor-clutch model of cell traction in a compliant microenvironment. Biophysical Journal, 2013, 105(3): 581-592
    Postma M, Haastert PJMV.A diffusion--translocation model for gradient sensing by chemotactic cells. Biophysical Journal, 2001, 81(3): 1314-1323
    Wu T, Feng J.Modeling the mechanosensitivity of neutrophils passing through a narrow channel. Biophysical Journal, 2015, 109(11): 2235-2245
    Dallon JC, Newren E, Hansen MDH.Using a mathematical model of cadherin-based adhesion to understand the function of the actin cytoskeleton. Physical Review E, 2009, 79(3): 031918
    Marée AFM, Grieneisen VA, Edelstein-Keshet L.How cells integrate complex stimuli: The effect of feedback from phosphoinositides and cell Shape on cell polarization and motility. PLoS Computational Biology, 2012, 8(3): e1002402
    Rappel WJ, Loomis WF.Eukaryotic chemotaxis. Wiley Interdisciplinary Reviews Systems Biology and Medicine, 2009, 1(1): 141-149
    Parent CA.A cell's sense of direction. Science, 1999, 284(5415): 765-770
    冯世亮, 朱卫平. 基于信号分子双向输运的运动细胞极性反转模拟. 力学学报, 2015, 47(2): 337-345
    (Feng Shiliang, Zhu Weiping.Simulation for reversal of cell polarity based on bidirectional transport of signaling molecules. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2): 337-345 (in Chinese))
    冯世亮, 朱卫平. 运动细胞初始极化阶段胞内信号分子双向积聚的分子机制及动态数值模拟. 中国科学: 物理学力学天文学, 2012(9): 973-986
    (Feng Shiliang, Zhu Weiping.Molecular mechanisms and dynamic simulations of bipolarization of chemotactic cells. Sci Sin-Phys Mech Astron, 2012, 42(9): 973-986 (in Chinese))
    Mori Y, Jilkine A, Edelstein-Keshet L.Wave-pinning and cell polarity from a bistable reaction-diffusion system. Biophysical Journal, 2008, 94(9): 3684-3697
    De Pascalis C, Etienne-Manneville S, Weaver VM.Single and collective cell migration: the mechanics of adhesions. Molecular Biology of the Cell, 2017, 28(14): 1833-1846
    Collins C, Nelson WJ.Running with neighbors: coordinating cell migration and cell-cell adhesion. Current Opinion in Cell Biology, 2015, 36: 62-70
    吕杰, 曹金凤, 许世雄等. 基于自然增长的细胞群粘附数值模拟. 力学学报, 2010, 42(4): 733-739
    (Lü Jie, Cao Jinfeng, Xu Shixiong, et al.A numerical simulation of cells adhesion based on the natural growth. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(4): 733-739 (in Chinese))
    Buckley CD, Tan J, Anderson KL, et al.The minimal cadherin-catenin complex binds to actin filaments under force. Science, 2014, 346(6209): 1254211-1254211
    Marshall BT, Long M, Piper JW, et al.Direct observation of catch bonds involving cell-adhesion molecules. Nature, 2003, 423(6936): 190-193
    Tanaka S, Sichau D, Iber D.LBIBCell: A cell-based simulation environment for morphogenetic problems. Bioinformatics, 2015, 31(14): 2340-2347
  • 期刊类型引用(1)

    1. 王鹏欢,汤名锴,王森林. 激光选区熔化成形多层级Gyroid点阵结构的力学性能研究. 力学学报. 2025(01): 148-161 . 本站查看

    其他类型引用(0)

计量
  • 文章访问数:  1378
  • HTML全文浏览量:  253
  • PDF下载量:  97
  • 被引次数: 1
出版历程
  • 收稿日期:  2020-01-09
  • 刊出日期:  2020-06-09

目录

    /

    返回文章
    返回