EI、Scopus 收录
中文核心期刊

有间隙折叠舵面的振动实验与非线性建模研究

何昊南, 于开平, 唐宏, 李金泽, 周前坤, 张晓蕾

何昊南, 于开平, 唐宏, 李金泽, 周前坤, 张晓蕾. 有间隙折叠舵面的振动实验与非线性建模研究[J]. 力学学报, 2019, 51(5): 1476-1488. DOI: 10.6052/0459-1879-19-119
引用本文: 何昊南, 于开平, 唐宏, 李金泽, 周前坤, 张晓蕾. 有间隙折叠舵面的振动实验与非线性建模研究[J]. 力学学报, 2019, 51(5): 1476-1488. DOI: 10.6052/0459-1879-19-119
He Haonan, Yu Kaiping, Tang Hong, Li Jinze, Zhou Qiankun, Zhang Xiaolei. VIBRATION EXPERIMENT AND NONLINEAR MODELLING RESEARCH ON THE FOLDING FIN WITH FREEPLAY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1476-1488. DOI: 10.6052/0459-1879-19-119
Citation: He Haonan, Yu Kaiping, Tang Hong, Li Jinze, Zhou Qiankun, Zhang Xiaolei. VIBRATION EXPERIMENT AND NONLINEAR MODELLING RESEARCH ON THE FOLDING FIN WITH FREEPLAY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1476-1488. DOI: 10.6052/0459-1879-19-119
何昊南, 于开平, 唐宏, 李金泽, 周前坤, 张晓蕾. 有间隙折叠舵面的振动实验与非线性建模研究[J]. 力学学报, 2019, 51(5): 1476-1488. CSTR: 32045.14.0459-1879-19-119
引用本文: 何昊南, 于开平, 唐宏, 李金泽, 周前坤, 张晓蕾. 有间隙折叠舵面的振动实验与非线性建模研究[J]. 力学学报, 2019, 51(5): 1476-1488. CSTR: 32045.14.0459-1879-19-119
He Haonan, Yu Kaiping, Tang Hong, Li Jinze, Zhou Qiankun, Zhang Xiaolei. VIBRATION EXPERIMENT AND NONLINEAR MODELLING RESEARCH ON THE FOLDING FIN WITH FREEPLAY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1476-1488. CSTR: 32045.14.0459-1879-19-119
Citation: He Haonan, Yu Kaiping, Tang Hong, Li Jinze, Zhou Qiankun, Zhang Xiaolei. VIBRATION EXPERIMENT AND NONLINEAR MODELLING RESEARCH ON THE FOLDING FIN WITH FREEPLAY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1476-1488. CSTR: 32045.14.0459-1879-19-119

有间隙折叠舵面的振动实验与非线性建模研究

详细信息
    通讯作者:

    于开平

  • 中图分类号: O322

VIBRATION EXPERIMENT AND NONLINEAR MODELLING RESEARCH ON THE FOLDING FIN WITH FREEPLAY

  • 摘要: 针对折叠舵面内、外舵铰接处存在的间隙对地面振动响应的影响及间隙处的非线性建模方法展开研究.消除间隙,利用锤击法对线性折叠舵面进行模态实验,得到了前五阶模态参数;打开间隙,进行振动台扫频基础激励,实验结果表明间隙的存在会使结构的动力学响应产生非线性现象,如正反向扫描差异、跳跃、多谐波及频率漂移.非线性的影响主要体现在一阶弯曲模态上,激励量级的增大和间隙的减小均会使基频增大,且逐渐趋向于无间隙的结果,但对第二阶扭转模态的影响与第一阶相比较小.建立了折叠舵面的有限元模型. 提出了一种适用于具有集中非线性的折叠机构的模型缩减方法,并对舵面进行了模态缩减.根据Hertz接触理论,用具有线性和3/2次刚度组合形式的非线性扭转弹簧来模拟铰接处的间隙和接触.通过比较锤击实验与数值计算得到的前四阶频率和振型对模型的线性部分进行验证.通过Bathe两子步隐式复合算法计算基础激励下非线性结构的动力学响应,得到的传递函数可以模拟实验中出现的频率变化特征,验证了连接处非线性建模方法的合理性.
    Abstract: The influence of the freeplay on ground vibration responses of the folding fin and the nonlinear modelling of the freeplay, which exists in the joints connecting the inboard fin and the outboard fin, are studied in this paper. The first five modal parameters are obtained by hammer tests of the linear structure without freeplay. The sweep base excitation is then applied to the root-fixed folding fin with adjustable freeplay. The experimental results show that the existence of freeplay can lead to some nonlinear phenomena of the structure, such as a forward and backward sweep difference, a jump, multi harmonics, and a frequency shift. This kind of lumped nonlinearity has a huge influence on the first bending mode. For example, both the increase of the excitation magnitude and the decrease of the angle of freeplay will raise the fundamental frequency which gradually tends to the result of the linear structure without freeplay, but they have little effects on the second torsion mode compared with those on the first bending mode. The finite element model of the folding fin is established in the numerical simulation analysis and it is reduced by the developed model reduction method which is suitable for similar folding structures with lumped nonlinearity. The freeplay and contact of the joints are simulated by nonlinear torsional springs with the combination of linear and 3/2 order stiffness according to the Hertz theory. The linear part of the folding fin is verified firstly via comparing the first four frequencies and mode shapes computed from numerical analysis and the above hammer test. The dynamic response of the nonlinear structure under base excitation is calculated by Bathe's two-step implicit composite algorithm. The transfer functions obtained can simulate the frequency variation characteristics in the experiments, thus verifying the proposed nonlinear modelling method of the joint.
  • [1] 王兴 . 局部非线性结构的动力学计算与试验辨识研究. [博士论文]. 北京: 清华大学, 2016
    [1] ( Wang Xing . Calculation and identification of structures with localized nonlinearities. [PhD Thesis]. Beijing: Tsinghua University, 2016 (in Chinese))
    [2] Tang D, Dowell EH, Virgin LN . Limit cycle behavior of an airfoil with a control surface. Journal of Fluids and Structures, 1998,12(7):839-858.
    [3] Lee J, Palazotto AN . The comparison of an airfoil to experimental limit cycle oscillation //AIAA Scitech Forum, San Diego California, 2019
    [4] 杨智春, 田玮, 谷迎松 等. 带集中非线性的机翼气动弹性问题研究进展. 航空学报, 2016,37(7):2013-2044
    [4] ( Yang Zhichun, Tian Wei, Gu Yingsong , et al. Advance in the study on wing aeroelasticity with concentrated nonlinearity. Acta Aeronautical et Astronautical Sinica, 2016,37(7):2013-2044 (in Chinese))
    [5] Tang F, Dowell EH . Aeroelastic airfoil with free play at angle of attack with gust excitation. AIAA Journal, 2010,48(2):427-442
    [6] 贾尚帅, 丁千 . 含间隙超音速二元弹翼非线性颤振与主动控制. 中国科学: 物理学力学天文学, 2013,43:390-400
    [6] ( Jia Shangshuai, Ding Qian . Nonlinear flutter and active control of the supersonic two-dimensional missile wings with a freeplay. Sci Sin- Phys Mech Astron, 2013,43:390-400 (in Chinese))
    [7] 刘芳, 丁千 . 含间隙折叠舵面的主共振响应分析. 航空动力学报, 2016,31(12):2965-2971
    [7] ( Liu Fang, Ding Qian . Primary resonance response analysis on folding rudder with gaps. Journal of Aerospace Power. 2016,31(12):2965-2971 (in Chinese))
    [8] He S, Yang ZC, Gu YS . Limit cycle oscillation behavior of transonic control surface buzz considering free-play nonlinearity. Journal of Fluids and Structures, 2016,61:431-449
    [9] Sazesh S, Shams S . Nonlinear aeroelastic analysis of an airfoil with control surface free-play using stochastic approach. Journal of Fluids and Structures, 2017,72:114-126
    [10] 王人凤, 尤云祥, 陈科 等. 两自由度舵$\!$-$\!$-$\!$轴系统振动三维效应修正模型. 力学学报, 2017,49(4):920-928
    [10] ( Wang Renfeng, You Yunxiang, Chen Ke , et al. A modified model for the vibrations of a two-degree-of-freedom hydrofoil-rod system considering 3D effect. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(4):920-928 (in Chinese))
    [11] Liska S, Dowell EH . Continuum aeroelastic model for a folding-wing configuration. AIAA Journal, 2009,47(10):2350-2358
    [12] Yang YX, Wu ZG, Yang C . Equivalent plate modeling for complex wing configurations. Procedia Engineering, 2012,31:409-415
    [13] Karpel M, Raveh D . Fictitious mass element in structural dynamics. AIAA Journal, 1996,34(3):607-613
    [14] Bae JS, Yang SM, Lee I . Linear and nonlinear aeroelastic analysis of fighter-type wing with control surface. Journal of Aircraft, 2002,39(4):697-708
    [15] Lee DH, Chen PC . Nonlinear aeroelastic studies on a folding wing configuration with freeplay hinge nonlinearity //47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Rhode Island, 2006
    [16] Yang N, Wang N, Zhang X , et al. Nonlinear flutter wind tunnel test and numerical analysis of folding fins with freeplay nonlinearities. Chinese Journal of Aeronautics, 2016,29(1):144-159
    [17] 杨宁, 吴志刚, 杨超 等. 折叠翼的结构非线性颤振分析. 工程力学, 2012,29(2):197-204
    [17] ( Yang Ning, Wu Zhigang, Yang Chao , et al. Flutter analysis of a folding wing with structural nonlinearity. Engineering Mechanics, 2012,29(2):197-204 (in Chinese))
    [18] Wu ZG, Yang N, Yang C . Identification of nonlinear multi-degree-of freedom structures based on Hilbert transformation. Science China Physics, Mechanics & Astronomy, 2014,57(9):1725-1736
    [19] Vasconcellos R, Abdelkefi A, Marques FD , et al. Representation and analysis of control surface freeplay nonlinearity. Journal of Fluids and Structures, 2012,31:79-91
    [20] Tang D, Dowell EH . Experimental aeroelastic models design and wind tunnel testing for correlation with new theory. Aerospace, 2016,3(2):12
    [21] Al-Mashhadani WJ, Dowell EH, Wasmi HR , et al. Aeroelastic response and limit cycle oscillations for wing-flap-tab section with freeplay in tab. Journal of Fluids and Structures, 2017,68:403-422
    [22] Bernhammer LO, Navalkar ST, Sodja J , et al. Experimental and numerical investigation of an autonomous flap for load alleviation. Journal of Aircraft, 2017,54(2):464-475
    [23] Verstraelen E, Dimitriadis G, Rossetto GDB , et al. Two-domain and three-domain limit cycles in a typical aeroelastic system with freeplay in pitch. Journal of Fluids and Structures, 2017,69:89-107
    [24] Lee BHK, Tron A . Effects of structural nonlinearities on flutter characteristics of the CF-18 aircraft. Journal of Aircraft, 1989,26(8):781-786
    [25] Wu ZG, Yang N, Yang C . Identification of nonlinear structures by the conditioned reverse path method. Journal of Aircraft, 2015,52(2):373-386
    [26] Bae JS, Kim DK, Shin WH , et al. Nonlinear Aeroelastic Analysis of a Deployable Missile Control Fin. Journal of Spacecraft and Rockets, 2004,41(2):264-271
    [27] Kim DK, Bae JS, Lee I , et al. Dynamic model establishment of a deployable missile control fin with nonlinear hinge. Journal of Spacecraft and Rockets, 2005,42(1):66-77
    [28] Shin WH, Lee I, Shin YS , et al. Nonlinear aeroelastic analysis for a control fin with an actuator. Journal of Aircraft, 2007,44(2):597-605
    [29] Fuellekrug U, Goege D . Identification of weak non-linearities within complex aerospace structures. Aerospace Science and Technology, 2012,23(1):53-62
    [30] Bampton MCC, Craig JRR . Coupling of substructures for dynamic analyses. AIAA Journal, 1968,6(7):1313-1319
    [31] Dai HH, Yue XK, Yuan JP , et al. A comparison of classical Runge-Kutta and Henon's methods for capturing chaos and chaotic transients in an aeroelastic system with freeplay nonlinearity. Nonlinear Dynamics, 2015,81(1-2):169-188
    [32] 胡海岩 . 分段线性系统动力学的非光滑性分析. 力学学报, 1996,28(4):483-488
    [32] ( Hu Haiyan . Nonsmooth analysis of dynamics of a piecewise linear system, Journal of Theoretical and Applied Mechanics, 1996,28(4):483-488 (in Chinese))
    [33] Conner MD, Virgin LN, Dowell EH . Accurate numerical integration of state-space models for aeroelastic systems with free play. AIAA Journal, 1996,34(10):2202-2205
    [34] Roberts I, Jones DP, Lieven NAJ , et al. Analysis of piecewise linear aeroelastic systems using numerical continuation. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2002,216(1):1-11
    [35] Liu L, Wong YS, Lee BHK . Non-linear aeroelastic analysis using the point transformation method, part 1: Freeplay model. Journal of Vibration and Sound, 2002,253(2):447-469
    [36] 王雯, 吴洁蓓, 高志强 等. 机械结合面切向接触阻尼计算模型. 力学学报, 2018,50(3):633-642
    [36] ( Wang Wen, Wu Jiebei, Gao Zhiqiang , et al. A calculation model for tangential contact damping of machine joint interfaces. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(3):633-642 (in Chinese))
    [37] 王东, 徐超, 胡杰 等. 连接结构接触界面非线性力学建模研究. 力学学报, 2018,50(1):44-57
    [37] ( Wang Dong, Xu Chao, Hu Jie , et al. Nonlinear mechanics modelling for joint interface of assembled structure. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(1):44-57 (in Chinese))
    [38] 王嗣强, 季顺迎 . 考虑等效曲率的超二次曲面单元非线性接触模型. 力学学报, 2018,50(5):1081-1092
    [38] ( Wang Siqiang, Ji Shunying . Non-linear contact model for super-quadric element considering the equivalent radius of curvature. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(5):1081-1092 (in Chinese))
    [39] Song ZG, He X, Liew KM . Dynamic responses of aerothermoelastic functionally graded CNT reinforced composite panels in supersonic airflow subjected to low-velocity impact. Composites Part B: Engineering, 2018,149:99-109
    [40] 李海勤, 孔宪仁, 刘源 . 接触非线性对声黑洞梁减振效果的影响. 力学学报, 2019,51(4):1189-1201
    [40] ( Li Haiqin, Kong Xianren, Liu Yuan . Effect of contact nonlinearity on acoustic black hole beam for vibration damping. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(4):1189-1201 (in Chinese))
    [41] Yang Y, Zeng QL, Wan LR . Dynamic response analysis of the vertical elastic impact of the spherical rock on the metal plate. International Journal of Solids and Structures, 2019,158:287-302
    [42] 于开平, 邹经湘 . 结构动力响应数值算法耗散和超调特性设计. 力学学报, 2005,37(4):467-476
    [42] ( Yu Kaiping, Zou Jingxiang . Two time integral algorithms with numerical dissipation and without overshoot for structural dynamic. Chinese Journal of Theoretical and Applied Mechanics, 2005,37(4):467-476 (in Chinese))
    [43] Bathe KJ , Noh G. Insight into an implicit time integration scheme for structural dynamics. Computers & Structures, 2012, 98- 99:1-6
    [44] Noh G, Bathe KJ . Further insights into an implicit time integration scheme for structural dynamics. Computers & Structures, 2018,202:15-24
  • 期刊类型引用(5)

    1. 薛奋琪,巩浩,刘检华,朱荣全,谢惟楚,雷静婷. 两反式光学系统光机集成仿真与成像质量预测代理模型构建. 兵工学报. 2025(03): 276-290 . 百度学术
    2. 于淼,赵文武,单兴业,毕道明. 一种基于应力控制的金属薄壳结构变形修复方法研究. 测控技术. 2024(04): 89-94 . 百度学术
    3. 安军,闵昌万,杨锐. 爆炸螺栓附加弯矩形成机理与结构优化设计. 宇航学报. 2024(10): 1524-1537 . 百度学术
    4. 柴燕. 超高层建筑预制钢筋混凝土组合梁抗弯性能研究. 粘接. 2023(10): 162-164+180 . 百度学术
    5. 刘培生,程伟. 横向载荷作用下螺栓在紧固过程中的力分析. 北京信息科技大学学报(自然科学版). 2022(06): 49-56 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  2130
  • HTML全文浏览量:  455
  • PDF下载量:  244
  • 被引次数: 9
出版历程
  • 收稿日期:  2019-05-08
  • 刊出日期:  2019-09-17

目录

    /

    返回文章
    返回