EI、Scopus 收录
中文核心期刊

上游静止方柱尾流对下游方柱体尾激振动效应影响

涂佳黄, 谭潇玲, 杨枝龙, 邓旭辉, 郭小刚, 张平

涂佳黄, 谭潇玲, 杨枝龙, 邓旭辉, 郭小刚, 张平. 上游静止方柱尾流对下游方柱体尾激振动效应影响[J]. 力学学报, 2019, 51(5): 1321-1335. DOI: 10.6052/0459-1879-19-051
引用本文: 涂佳黄, 谭潇玲, 杨枝龙, 邓旭辉, 郭小刚, 张平. 上游静止方柱尾流对下游方柱体尾激振动效应影响[J]. 力学学报, 2019, 51(5): 1321-1335. DOI: 10.6052/0459-1879-19-051
Tu Jiahuang, Tan Xiaoling, Yang Zhilong, Deng Xuhui, Guo Xiaogang, Zhang Ping. EFFECT OF WAKE INDUCED-VIBRATION RESPONSES OF A SQUARE CYLINDER BEHIND THE STATIONARY SQUARE CYLINDER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1321-1335. DOI: 10.6052/0459-1879-19-051
Citation: Tu Jiahuang, Tan Xiaoling, Yang Zhilong, Deng Xuhui, Guo Xiaogang, Zhang Ping. EFFECT OF WAKE INDUCED-VIBRATION RESPONSES OF A SQUARE CYLINDER BEHIND THE STATIONARY SQUARE CYLINDER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1321-1335. DOI: 10.6052/0459-1879-19-051
涂佳黄, 谭潇玲, 杨枝龙, 邓旭辉, 郭小刚, 张平. 上游静止方柱尾流对下游方柱体尾激振动效应影响[J]. 力学学报, 2019, 51(5): 1321-1335. CSTR: 32045.14.0459-1879-19-051
引用本文: 涂佳黄, 谭潇玲, 杨枝龙, 邓旭辉, 郭小刚, 张平. 上游静止方柱尾流对下游方柱体尾激振动效应影响[J]. 力学学报, 2019, 51(5): 1321-1335. CSTR: 32045.14.0459-1879-19-051
Tu Jiahuang, Tan Xiaoling, Yang Zhilong, Deng Xuhui, Guo Xiaogang, Zhang Ping. EFFECT OF WAKE INDUCED-VIBRATION RESPONSES OF A SQUARE CYLINDER BEHIND THE STATIONARY SQUARE CYLINDER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1321-1335. CSTR: 32045.14.0459-1879-19-051
Citation: Tu Jiahuang, Tan Xiaoling, Yang Zhilong, Deng Xuhui, Guo Xiaogang, Zhang Ping. EFFECT OF WAKE INDUCED-VIBRATION RESPONSES OF A SQUARE CYLINDER BEHIND THE STATIONARY SQUARE CYLINDER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1321-1335. CSTR: 32045.14.0459-1879-19-051

上游静止方柱尾流对下游方柱体尾激振动效应影响

基金项目: 1) 国家自然科学基金(11602214);国家自然科学基金(51434002);中国博士后科学基金(2017M622593);湖南省教育厅科学研究优秀青年项目(18B079);湖南省自然科学基金资助(2016JJ3117)
详细信息
    通讯作者:

    涂佳黄

  • 中图分类号: O357.1

EFFECT OF WAKE INDUCED-VIBRATION RESPONSES OF A SQUARE CYLINDER BEHIND THE STATIONARY SQUARE CYLINDER

  • 摘要: 基于半隐式特征线分裂算子有限元法,对低雷诺数下串列布置上游静止方柱--下游双自由度运动方柱体结构的尾激振动问题进行了研究.首先与现有文献结果进行对比验证该方法的正确性.然后着重分析了雷诺数($Re$)与折减速度$(U_{\rm r})$两个关键参数对下游方柱尾激振动响应的影响,同时将计算结果与单方柱工况进行了对比. 数值计算结果表明,雷诺数和折减速度对下游方柱的振幅、振动频率和运动轨迹等动力响应特性的影响较大.随着雷诺数的增大,双柱系统的互扰效应从以涡激效应为主逐渐转变为尾激效应发挥主导作用,从而导致下游方柱的振动响应增强.单方柱工况结构运动轨迹均呈"8"字形. 然而,下游方柱的运动轨迹会随着雷诺数的增加而变得复杂.雷诺数较小时($Re\!=\!40$, 80),下游方柱的运动轨迹基本为"8"字形. 雷诺数较大时($Re\!=\!120$, 160,200), 下游方柱的运动轨迹会出现双"8"字形. 同时,下游方柱的尾流场特性主要呈现2S, 2S*, 2P, 2T, P+S和稳态6种模式.最后, 通过对流场特性进行分析,揭示了串列双方柱系统尾激振动效应的作用机理.
    Abstract: Wake-induced vibration (WIV) of a two-degree-of-freedom downstream square cylinder behind a stationary upstream square one are numerically investigated at low Reynolds numbers by using semi-implicit Characteristics-based split(CBS) finite element algorithm in this study. Firstly, the results are compared with the existing data in the literature to verify the accurateness of the method. Then, the influence of Reynolds number ($Re$) and reduced velocity ($U_{\rm r})$on the wake-induced vibration response of the downstream square cylinder is analyzed. Meanwhile, the results are also compared with those of the single square cylinder case. The numerical results show that the $Re$and $U_{\rm r}$have great influence on the dynamic response characteristics, such as amplitude, vibration frequency and motion trajectory of the downstream square cylinder. With the increasing of $Re$, the interaction between both cylinders changes from the vortex-induced interference to the wake one, resulting in the change of the frequency characteristics and the intensifying dynamic response of the downstream circular cylinder. The trajectories resemble figure "8" in the single square cylinder case. However, in the case of both cylinders arranged in-line, the trajectories of the downstream cylinder become complicated with the increasing of $Re$. The motion orbits are basically "8" figure at $Re=40$, 80. When the $Re$are 120, 160 and 200, the "dual-8" figure can be observed. Meanwhile, the wake field characteristics of the downstream square cylinder show 2S, 2S*, 2P, 2T, P+S and steady mode. Finally, the wake-induced vibration mechanisms of two square cylinders in the tandem arrangement is revealed according to the analysis of the characteristic of the flow field.
  • [1] Williamson C, Govardhan R . Vortex-induced vibrations. Annual Review of Fluid Mechanics, 2004,36(1):413-455
    [2] Bearman P . Circular cylinder wakes and vortex-induced vibrations. Journal of Fluids and Structures, 2011,27(5):648-658
    [3] Gabbai R, Benaroya H . An overview of modeling and experiments of vortex-induced vibration of circular cylinders. Journal of Sound and Vibration, 2005,282(3):575-616
    [4] 徐枫, 欧进萍, 肖仪清 . 不同截面形状柱体流致振动的CFD数值模拟. 工程力学, 2009,26(4):7-15
    [4] ( Xu Feng, Ou Jinping, Xiao Yiqing . CFD numerical simulation of flow-induced vibration with different cross-section cylinder. Engineering Mechanics, 2009,26(4):7-015 (in Chinese))
    [5] 何涛 . 基于ALE有限元法的流固耦合强耦合数值模拟. 力学学报, 2018,39(2):1549-1561
    [5] ( He Tao . A partitioned strong coupling algorithm for fluid-structure interaction using arbitrary lagrangian-eulerian finite element formulation. Chinese Journal of Theoretical and Applied Mechanics, 2018,39(2):1549-1561 (in Chinese))
    [6] 丁林, 张力, 姜德义 . 高雷诺数范围内不同形状柱体流致振动特性研究. 振动与冲击, 2015(12):176-181
    [6] ( Ding Lin, Zhang Li, Jiang Deyi . Flow induced motion of bluf bodies with different cross sections in flow field with high Reynolds number. Journal of Vibration and Shock, 2015(12):176-181 (in Chinese))
    [7] Zhao M, Cheng L, Zhou T . Numerical simulation of vortex-induced vibration of a square cylinder at a low Reynolds number. Physics of Fluids, 2013,25(2):023603
    [8] Zhao M . Flow-induced vibrations of square and rectangular cylinders at low Reynolds number. Fluid Dynamics Research, 2015,47(2):025502
    [9] Sen S, Mittal S . Effect of mass ratio on free vibrations of a square cylinder at low Reynolds numbers. Journal of Fluids and Structures, 2015,54:661-678
    [10] Sen S, Mittal S . Free vibration of a square cylinder at low Reynolds numbers. Journal of Fluids and Structures, 2011,50:875-884
    [11] Zhao J, Leontini J, Jacono D , et al. Fluid--structure interaction of a square cylinder at different angles of attack. Journal of Fluid Mechanics, 2014,747:688-721
    [12] Nemes A, Zhao J, Jacono D , et al. The interaction between flow-induced vibration mechanisms of a square cylinder with varying angles of attack. Journal of Fluid Mechanics, 2012,710:102-130
    [13] Jiang H, Cheng L, An H . Three-dimensional wake transition of a square cylinder. Journal of Fluid Mechanics, 2018,842:102-127
    [14] Bao Y, Zhou D, Tu J . Flow interference between a stationary cylinder and an elastically mounted cylinder arranged in proximity. Journal of Fluids and Structures, 2011,27(8):1425-1446
    [15] 段松长, 赵西增, 叶洲腾 等. 错列角度对双圆柱涡激振动影响的数值模拟研究. 力学学报, 2018,50(2):244-253
    [15] ( Duan Songchang, Zhao Xizeng, Ye Zhouteng , et al. Numerical study of staggered angle on the vortex-induced vibration of two cylinders. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(2):244-253 (in Chinese))
    [16] Assi G, Bearman P, Carmo B , et al. The role of wake stiffness on the wake-induced vibration of the downstream cylinder of a tandem pair. Journal of Fluid Mechanics, 2013,718(3):210-245
    [17] Nguyen V, Ronald C, Nguyen H . Numerical investigation of wake induced vibrations of cylinders in tandem arrangement at subcritical Reynolds numbers. Ocean Engineering, 2018,154:341-356
    [18] ysa R, Law Y, Jaiman R . Interaction dynamics of upstream vortex with vibrating tandem circular cylinder at subcritical Reynolds number. Journal of Fluids and Structures, 2017,75:27-44
    [19] Borazjani I, Sotiropoulos F . Vortex-induced vibrations of two cylinders in tandem arrangement in the proximity-wake interference region. Journal of Fluid Mechanics, 2009,621:321-364
    [20] Carmo B, Sherwin S, Bearman P , et al. Flow-induced vibration of a circular cylinder subjected to wake interference at low Reynolds number. Journal of Fluids and Structures, 2011,27(4):503-522
    [21] Papaioannou G, Yue D, Triantafyllou M , et al. On the effect of spacing on the vortex-induced vibrations of two tandem cylinders. Journal of Fluids and Structures, 2008,24(6):833-854
    [22] Mahmoud S, Atef M . Flow-induced vibration of three unevenly spaced in-line cylinder in cross-flow. Joural of Fluids and Structures, 2018,76:367-383
    [23] 陈威霖, 及春宁, 许栋 . 小间距比下串列双圆柱涡激振动数值模拟研究:振动响应和流体力. 振动与冲击, 2018,37(23):261-269
    [23] ( Chen Weilin, Ji Chunning, Xu Dong . Numerical simulations for VIVs of two tandem cylinders with small spacing ratios: Vibration responses and hydrodynamic forces. Journal of Vibration and Shock, 2018,37(23):261-269 (in Chinese))
    [24] Tamimi V, Naeeni S, Zeinoddini M . Flow induced vibrations of a sharp edge square cylinder in the wake of a circular cylinder. Applied Ocean Research, 2017,66:117-130
    [25] Bhatt R, Alam M . Vibrations of a square cylinder submerged in a wake. Journal of Fluid Mechanics, 2018,853:301-332
    [26] Nitun M, Tiwari S . Flow past two tandem square cylinders vibrating transversely in phase. Fluid Dynamics Research, 2014,46(5):055509
    [27] Tu JH, Sun WJ, Zhou D , et al. Flow characteristics and dynamic responses of a rear circular cylinder behind the square cylinder with different side lengths. Journal of Vibroengineering, 2017,19(4):2956-2975
    [28] Wang H, Yang W, Nguyen K , et al. Wake-induced vibrations of an elastically mounted cylinder located downstream of a stationary larger cylinder at low Reynolds numbers. Journal of Fluids and Structures, 2014,50:479-496
    [29] 涂佳黄, 谭潇玲, 邓旭辉 等. 平面剪切来流作用下串列布置三圆柱流致运动特性研究. 力学学报, 2019,51(3):787-802
    [29] ( Tu Jiahuang, Tan Xiaoling, Deng Xuhui , et al. Study of flow-induced motion characteristics of three tandem circular cylinders in planar shear flow. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(3):787-802 (in Chinese))
    [30] Jaiman R, Pillalamarri N, Guan M . A stable second-order partitioned iterative scheme for freely vibrating low-mass bluff bodies in a uniform flow. Computer Methods in Applied Mechanics and Engineering, 2016,301:187-215
    [31] Han Z, Zhou D, Tu J . Wake-induced vibrations of a circular cylinder behind a stationary square cylinder using a semi-implicit characteristic-based split scheme. Journal of Engineering Mechanics (ASCE), 2014,140:04014059
    [32] Langre E . Frequency lock-in is caused by coupled-mode flutter. Journal of Fluids and Structures, 2006,22(6-7):783-791
    [33] Mittal S, Kumar V . Finite element study of vortex-induced cross-flow and in-line oscillations of a circular cylinder at low Reynolds numbers. International Journal for Numerical Methods in Fluids, 1999,31(7):1087-1120
  • 期刊类型引用(5)

    1. 涂佳黄,黄林茜,何永康,吕海宇,梁经群. 低雷诺数下串列布置双圆柱涡激振动特性研究. 力学学报. 2022(01): 68-82 . 本站查看
    2. 朱德华,沈清,杨武兵. 返回舱高雷诺数再入过程底部流动稳定性. 力学学报. 2021(03): 752-760 . 本站查看
    3. 张小霞,林鹏智. 波浪作用下柔性草本植物受力特性研究. 力学学报. 2021(04): 1018-1027 . 本站查看
    4. 涂佳黄,胡刚,谭潇玲,梁经群,张平. 串列布置三圆柱涡激振动频谱特性研究. 力学学报. 2021(06): 1552-1568 . 本站查看
    5. 刘丽丽,陈培芝,赵月,朱德华. 再入式飞行器不同绕流状态的底部流动特征(英文). 导弹与航天运载技术. 2021(06): 114-120 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  1242
  • HTML全文浏览量:  159
  • PDF下载量:  173
  • 被引次数: 8
出版历程
  • 收稿日期:  2019-03-05
  • 刊出日期:  2019-09-17

目录

    /

    返回文章
    返回