EI、Scopus 收录
中文核心期刊

镓铟锡液滴撞击泡沫金属表面的运动学特性研究

尚超, 阳倦成, 张杰, 倪明玖

尚超, 阳倦成, 张杰, 倪明玖. 镓铟锡液滴撞击泡沫金属表面的运动学特性研究[J]. 力学学报, 2019, 51(2): 380-391. DOI: 10.6052/0459-1879-18-307
引用本文: 尚超, 阳倦成, 张杰, 倪明玖. 镓铟锡液滴撞击泡沫金属表面的运动学特性研究[J]. 力学学报, 2019, 51(2): 380-391. DOI: 10.6052/0459-1879-18-307
Chao Shang, Juancheng Yang, Jie Zhang, Mingjiu Ni. EXPERIMENTAL STUDY ON THE DYNAMIC CHARACTERISTICS OF GALINSTAN DROPLET IMPACTING ON THE METAL FOAM SURFACE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 380-391. DOI: 10.6052/0459-1879-18-307
Citation: Chao Shang, Juancheng Yang, Jie Zhang, Mingjiu Ni. EXPERIMENTAL STUDY ON THE DYNAMIC CHARACTERISTICS OF GALINSTAN DROPLET IMPACTING ON THE METAL FOAM SURFACE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 380-391. DOI: 10.6052/0459-1879-18-307
尚超, 阳倦成, 张杰, 倪明玖. 镓铟锡液滴撞击泡沫金属表面的运动学特性研究[J]. 力学学报, 2019, 51(2): 380-391. CSTR: 32045.14.0459-1879-18-307
引用本文: 尚超, 阳倦成, 张杰, 倪明玖. 镓铟锡液滴撞击泡沫金属表面的运动学特性研究[J]. 力学学报, 2019, 51(2): 380-391. CSTR: 32045.14.0459-1879-18-307
Chao Shang, Juancheng Yang, Jie Zhang, Mingjiu Ni. EXPERIMENTAL STUDY ON THE DYNAMIC CHARACTERISTICS OF GALINSTAN DROPLET IMPACTING ON THE METAL FOAM SURFACE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 380-391. CSTR: 32045.14.0459-1879-18-307
Citation: Chao Shang, Juancheng Yang, Jie Zhang, Mingjiu Ni. EXPERIMENTAL STUDY ON THE DYNAMIC CHARACTERISTICS OF GALINSTAN DROPLET IMPACTING ON THE METAL FOAM SURFACE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 380-391. CSTR: 32045.14.0459-1879-18-307

镓铟锡液滴撞击泡沫金属表面的运动学特性研究

基金项目: 国家自然科学基金(51636009);国家自然科学基金(51776166);中国博士后科学基金(2016M592779)
详细信息
    作者简介:

    2) 阳倦成,副教授,主要研究方向:磁流体力学. E-mail: yangjc@xjtu.edu.cn|3) 倪明玖,教授,主要研究方向:磁流体力学. E-mail: mjni@ucas.ac.cn

  • 中图分类号: O35

EXPERIMENTAL STUDY ON THE DYNAMIC CHARACTERISTICS OF GALINSTAN DROPLET IMPACTING ON THE METAL FOAM SURFACE

  • 摘要: 常温下为液态的镓铟锡合金以其优异的导热性能在具有特殊要求的传热领域有着重要的应用价值,与传统流动介质相比较大的表面张力使得其产生的流动现象必有所区别.本文研究镓铟锡所形成的液滴撞击泡沫金属表面后所产生的铺展、回缩及回弹现象.采用高速相机拍摄液滴投影轮廓随液滴运动的变化过程,并通过图像处理获得不同撞击速度、底板表面孔径下的液滴铺展系数、中心位置轮廓高度以及液滴回弹后在空中的振动特性.研究结果表明:具有较高表面张力的镓铟锡液滴的铺展系数随无量纲时间的变化在铺展初始阶段仍满足常规流体的1/2次幂关系,只在铺展后期与底板的无量纲孔径有关系;液滴的最大铺展系数在较小无量纲孔径底板大于在光滑镍板,且随底板无量纲孔径增大而逐渐减小;在回弹过程,由于底板孔隙结构的存在使得液滴回弹后在空中的振动呈现3种形态:规则的横向和纵向振动、带旋转的横向和纵向振动以及旋转振动;最后,通过对振动频率的拟合和分析,进一步拓展了传统振动频率理论公式在非规则振动过程预测中的应用.
    Abstract: The eutectic alloy GaInSn which is liquid at room temperature has a great importance in application where the special heat transfer requirements because of its excellent heat conductivity. However, the corresponding flow characteristics in GaInSn will naturally be different from conventional fluid due to the high surface tension. In present paper, we carry out studies on the spreading, recoiling and rebounding phenomenon after the impacting of GaInSn droplets on metal foam surface. The high-speed camera is used to capture the droplet contours projected by the backlight during the moving of droplets. Through the image process method, the spreading factor, height of droplet contour in the center line and the oscillation characteristic of droplet after rebounding are obtained. Results show that at the early stage of the droplet impact, the spreading characteristic of GaInSn droplet with high surface tension is proportional to the square root of the normalized time, which is consistent with that from conventional liquid, while relates with the non-dimensional pole size of foam surface during the following spreading process. The maximum spreading factor of GaInSn droplets spreading on small non-dimensional pole size of foam surface is larger than that on smooth nickel surface, and decreases with the increase of the non-dimensional pole size of foam surface. During the rebounding process, the shape oscillation can be divided into three modes due to the difference in pore structure of surface: the regular oscillation in horizontal direction and vertical direction, the oscillation in horizontal direction and vertical direction with rotation and the rotation oscillation. Finally, the traditional theoretical formula used to predict the oscillation frequency of droplets or bubbles has been extended to cases with irregular oscillation in droplet shape through the fitting of present experimental data and analysis.
  • [1] 毕菲菲, 郭亚丽, 沈胜强 等. 液滴撞击固体表面铺展特性的实验研究. 物理学报, 2012,61(18):295-300
    [1] ( Bi Feifei, Guo Yali, Shen Shengqiang , et al. Experimental study of spread characteristics of droplet impacting solid surface. Acta Physica Sinica, 2012,61(18):295-300 (in Chinese))
    [2] 王志超, 李大鸣, 李杨杨 等. 基于SPH方法的液滴撞击可湿润固壁模拟.科学通报, 2017(24):2788-2795
    [2] ( Wang Zhichao, Li Daming, Li Yangyang , et al. Numerical studies on droplet impact to wettable solid boundary based on SPH method. Chin Sci Bull, 2017(24):2788-2795 (in Chinese))
    [3] 焦云龙, 刘小君, 逄明华 等. 固体表面液滴铺展与润湿接触线的移动分析. 物理学报, 2016,65(1):348-355
    [3] ( Jiao Yunlong, Liu Xiaojun, Pang Minghua , et al. Analyses of droplet spreading and the movement of wetting line on a solid surface. Acta Physica Sinica, 2016,65(1):348-355 (in Chinese))
    [4] 陈石, 陶英, 沈胜强 等. 平壁液滴静态铺展影响因素的研究. 力学学报, 2014,46(3):329-335
    [4] ( Chen Shi, Tao Ying, Shen Shengqiang , et al. Static spreading of droplet impact on solid surface: Influence factor. Chinese Journal of Theoretical & Applied Mechanics, 2014,46(3):329-335(in Chinese))
    [5] Marengo M, Antonini C, Roisman IV , et al. Drop collisions with simple and complex surfaces. Current Opinion in Colloid & Interface Science, 2011,16(4):292-302
    [6] Gupta A, Kumar R . Droplet impingement and breakup on a dry surface. Computers & Fluids, 2010,39(9):1696-1703
    [7] 宋云超, 宁智, 孙春华 等. 液滴撞击湿润壁面的运动形态及飞溅运动机制. 力学学报, 2013,45(6):833-842
    [7] ( Song Yunchao, Ning Zhi, Sun Chunhua , et al. Movement and splashing of a droplet impacting on a wet wall. Chinese Journal of Theoretical & Applied Mechanics, 2013,45(6):833-842 (in Chinese))
    [8] Josserand C, Thoroddsen ST . Drop impact on a solid surface. Annual Review of Fluid Mechanics, 2016,48:365-391
    [9] Visser CW, Frommhold PE, Wildeman S , et al. Dynamics of high-speed micro-drop impact: Numerical simulations and experiments at frame-to-frame times below 100 ns. Soft Matter, 2015,11(9):1708-1722
    [10] Bartolo D, Josserand C, Bonn D . Retraction dynamics of aqueous drops upon impact on non-wetting surfaces. Journal of Fluid Mechanics, 2005,545:329-338
    [11] Trapaga G, Szekely J . Mathematical modeling of the isothermal impingement of liquid droplets in spraying processes. Metallurgical and Materials Transactions B, 1991,22(6):901-914
    [12] Bennett T, Poulikakos D . Splat-quench solidification: estimating the maximum spreading of a droplet impacting a solid surface. Journal of Materials Science, 1993,28(4):963-970
    [13] Eggers J, Fontelos MA, Josserand C , et al. Drop dynamics after impact on a solid wall: Theory and simulations. Physics of Fluids, 2010,22(6):062101
    [14] Clanet C, Béguin C, Richard D , et al. Maximal deformation of an impacting drop. Journal of Fluid Mechanics, 2004,517:199-208
    [15] Tsai P, Hendrix MHW, Dijkstra RRM , et al. Microscopic structure influencing macroscopic splash at high Weber number. Soft Matter, 2011,7(24):11325-11333
    [16] Pasandideh-Fard M, Qiao YM, Chandra S , et al. Capillary effects during droplet impact on a solid surface. Physics of Fluids, 1996,8(1):650-659
    [17] Yonemoto Y, Kunugi T . Analytical consideration of liquid droplet impingement on solid surfaces. Scientific Reports, 2017,7(1):2362
    [18] Mao T, Kuhn DCS, Tran H . Spread and rebound of liquid droplets upon impact on flat surfaces. Aiche Journal, 1997,43(9):2169-2179
    [19] Becker E, Hiller WJ, Kowalewski TA . Experimental and theoretical investigation of large-amplitude oscillations of liquid droplets. Journal of Fluid Mechanics, 1991,231:189-210
    [20] Lamb H , Hydrodynamics, sixth edn. UK: Cambridge University Press, 1932: 571-581
    [21] Poulichet V, Huerre A, Garbin V . Shape oscillations of particle-coated bubbles and directional particle expulsion. Soft Matter, 2017,13(1):125-133
    [22] Veldhuis C, Biesheuvel A, Van Wijngaarden L . Shape oscillations on bubbles rising in clean and in tap water. Physics of Fluids, 2008,20(4):040705
    [23] Tesa$\breve{r}$ V . Shape oscillation of microbubbles. Chemical Engineering Journal, 2014,235:368-378
    [24] Lalanne B, Tanguy S, Risso F . Effect of rising motion on the damped shape oscillations of drops and bubbles. Physics of Fluids, 2013,25(11):112107
    [25] Bostwick JB, Steen PH . Capillary oscillations of a constrained liquid drop. Physics of Fluids, 2009,21(3):032108
    [26] Marston PL . Shape oscillation and static deformation of drops and bubbles driven by modulated radiation stresses--Theory. The Journal of the Acoustical Society of America, 1980,67(1):15-26
    [27] Prosperetti A . Linear oscillations of constrained drops, bubbles, and plane liquid surfaces. Physics of Fluids, 2012,24(3):032109
    [28] Dhiman R, Chandra S . Freezing-induced splashing during impact of molten metal droplets with high Weber numbers. International Journal of Heat & Mass Transfer, 2005,48(25-26):5625-5638
    [29] Be'Er A, Lereah Y, Frydman A , et al. Spreading of mercury droplets on thin silver films at room temperature. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2007,75(1):051601
    [30] Be'Er A, Lereah Y, Frydman A , et al. Spreading of a mercury droplet on thin gold films. Physica A$:$ Statistical Mechanics & Its Applications, 2002,314(1-4):325-330
    [31] Yang JC, Qi TY, Han TY , et al. Elliptical spreading characteristics of a liquid metal droplet impact on a glass surface under a horizontal magnetic field. Physics of Fluids, 2018,30(1):012101
    [32] Shakeri S, Chandra S . Splashing of molten tin droplets on a rough steel surface. International Journal of Heat & Mass Transfer, 2002,45(23):4561-4575
    [33] Morley NB, Burris J, Cadwallader LC , et al. GaInSn usage in the research laboratory. Review of Scientific Instruments, 2008,79(5):056107
    [34] Liu T, Sen P, Kim CJ . Characterization of nontoxic liquid-metal alloy galinstan for applications in microdevices. Journal of Microelectromechanical Systems, 2012,21(2):443-450
    [35] Xu Q, Oudalov N, Guo Q , et al. Effect of oxidation on the mechanical properties of liquid gallium and eutectic gallium-indium. Physics of Fluids, 2012,24(6):299-606
    [36] Rioboo R, Marengo M, Tropea C . Time evolution of liquid drop impact onto solid, dry surfaces. Experiments in Fluids, 2002,33(1):112-124
    [37] Xu L, Barcos L, Nagel SR . Splashing of liquids: interplay of surface roughness with surrounding gas. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2007,76(2):066311
    [38] Pearson JT, Maynes D, Webb BW . Droplet impact dynamics for two liquids impinging on anisotropic superhydrophobic surfaces. Experiments in Fluids, 2012,53(3):603-618
    [39] Tsamopoulos JA, Brown RA . Nonlinear oscillations of inviscid drops and bubbles. Journal of Fluid Mechanics, 1983,127:519-537
    [40] Oh JM, Ko SH, Kang KH . Shape oscillation of a drop in ac electrowetting. Langmuir, 2008,24(15):8379-8386
    [41] Versluis M, Goertz DE, Palanchon P , et al. Microbubble shape oscillations excited through ultrasonic parametric driving. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2010,82(2):026321
    [42] 刘延柱, 陈文良, 陈立群 .振动力学.北京:高等教育出版社, 1998: 11-13
    [42] ( Liu Yanzhu, Chen Wenliang, Chen Liqun. Mechanics of Vibrations, Beijing: Higher Education Press, 1998: 11-13(in Chinese))
  • 期刊类型引用(3)

    1. 杨彬,杨洪伟,李爽,尤伟. 基于不同动力引力辅助模型的木星转移轨道设计. 上海航天. 2019(03): 55-61 . 百度学术
    2. 袁国强,李颖晖. 二维稳定流形的自适应推进算法. 力学学报. 2018(02): 405-414 . 本站查看
    3. 郑丹丹,罗建军,张仁勇,刘磊. 基于混合Lie算子辛算法的不变流形计算. 力学学报. 2017(05): 1126-1134 . 本站查看

    其他类型引用(1)

计量
  • 文章访问数:  1737
  • HTML全文浏览量:  292
  • PDF下载量:  210
  • 被引次数: 4
出版历程
  • 收稿日期:  2018-09-15
  • 刊出日期:  2019-03-17

目录

    /

    返回文章
    返回