EI、Scopus 收录
中文核心期刊

基于步态切换的欠驱动双足机器人控制方法

葛一敏, 袁海辉, 甘春标

葛一敏, 袁海辉, 甘春标. 基于步态切换的欠驱动双足机器人控制方法[J]. 力学学报, 2018, 50(4): 871-879. DOI: 10.6052/0459-1879-18-049
引用本文: 葛一敏, 袁海辉, 甘春标. 基于步态切换的欠驱动双足机器人控制方法[J]. 力学学报, 2018, 50(4): 871-879. DOI: 10.6052/0459-1879-18-049
Ge Yimin, Yuan Haihui, Gan Chunbiao. CONTROL METHOD OF AN UNDERACTUATED BIPED ROBOT BASED ON GAIT TRANSITION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 871-879. DOI: 10.6052/0459-1879-18-049
Citation: Ge Yimin, Yuan Haihui, Gan Chunbiao. CONTROL METHOD OF AN UNDERACTUATED BIPED ROBOT BASED ON GAIT TRANSITION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 871-879. DOI: 10.6052/0459-1879-18-049
葛一敏, 袁海辉, 甘春标. 基于步态切换的欠驱动双足机器人控制方法[J]. 力学学报, 2018, 50(4): 871-879. CSTR: 32045.14.0459-1879-18-049
引用本文: 葛一敏, 袁海辉, 甘春标. 基于步态切换的欠驱动双足机器人控制方法[J]. 力学学报, 2018, 50(4): 871-879. CSTR: 32045.14.0459-1879-18-049
Ge Yimin, Yuan Haihui, Gan Chunbiao. CONTROL METHOD OF AN UNDERACTUATED BIPED ROBOT BASED ON GAIT TRANSITION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 871-879. CSTR: 32045.14.0459-1879-18-049
Citation: Ge Yimin, Yuan Haihui, Gan Chunbiao. CONTROL METHOD OF AN UNDERACTUATED BIPED ROBOT BASED ON GAIT TRANSITION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 871-879. CSTR: 32045.14.0459-1879-18-049

基于步态切换的欠驱动双足机器人控制方法

基金项目: 国家自然科学基金资助项目(11772292, 91748126, 11372270).
详细信息
    作者简介:

    *甘春标, 教授, 主要研究方向: 非线性动力学、仿人机器人以及故障诊断. E-mail:cb_gan@zju.edu.cn

    通讯作者:

    甘春标

  • 中图分类号: TP24;

CONTROL METHOD OF AN UNDERACTUATED BIPED ROBOT BASED ON GAIT TRANSITION

  • 摘要: 由于高维、非线性、欠驱动等特点, 3-D双足机器人的稳定性控制依然是一个研究难点. 一些传统的控制方法, 如基于事件的反馈控制方法和PD控制方法, 抗扰动能力较弱, 鲁棒性较差. 通过观察, 人类受到外部扰动影响时, 会通过调整步态重新获得稳定性,相较之下仅依靠一个步态获得的稳定性是有限的. 受此启发, 本文针对上述问题提出一种基于步态切换的欠驱动3-D双足机器人控制方法. 首先, 以能耗最少为优化目标, 通过非线性优化方法预先设计多组不同步长、步速的步态作为参考步态, 以构建一个步态库; 然后, 通过综合考虑步态切换过程中的稳定性与能效, 建立了多目标步态切换函数; 最后, 将该步态切换函数作为优化目标, 并求解该最小化问题获得下一步的参考步态, 从而实现步态切换, 达到使用步态库?多轨迹方法来提高鲁棒性的目的. 在仿真实验中运用该步态切换控制方法, 欠驱动3-D双足机器人可实现相对高度在[-20, 20] mm内随机变化的不平整地面上行走, 而仅采用单步态控制策略则无法克服这样的外部扰动, 从而说明了基于步态切换的欠驱动双足机器人控制方法的有效性.
    Abstract: The stability control of underactuated 3-D biped robot is still a hard nut to crack, as a result of locomotion characteristics which mix high dimension, strong nonlinearity and underactuation. Some traditional control methods, such as event-based feedback control and PD control, are poor in robustness and weak in resistance to external disturbances. Through observation, it is certain that humans adjust gaits tactically to regain stability when they are affected by external disturbances, by contrast with trying to keep the stability sustained by only one gait which is quite limited. Inspired by this, a control method based on gait transition is proposed for the underactuated 3-D biped robot. First of all, taking the minimum energy consumption as the optimization goal, a multi group of gait and step gait is designed as the reference gait to build a gait library by nonlinear optimization method. Secondly, to obtain an optimal performance in terms of the balance between the stability and input torques, a multi-objective gait transition function is established. Finally, a reference gait that minimizes the gait transition function is obtained by solving a quadratic optimization problem, and it is then used as the walking gait for the next step with the purpose of using gait library (multiple trajectories) method to reach the goal of improving robustness. In the simulation experiment, using the proposed gait transition control method, the underactuated 3-D biped robot can walk through the rough ground with the relative height varying within the range [-20,20] mm without falling down, in contrast to the failure of previous one-gait control method. The results show the effectiveness of the method.
  • [1] 程靖, 陈力. 空间机器人双臂捕获卫星力学分析及镇定控制. 力学学报, 2016, 48(4): 832-842
    [1] (Cheng Jing, Chen Li.Mechanical analysis and calm control of dual-arm space robot for capturing a satellite.Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 832-842 (in Chinese))
    [2] 陶波,龚泽宇,丁汉. 机器人无标定视觉伺服控制研究进展. 力学学报, 2016, 48(4): 767-783
    [2] (Tao Bo, Gong Zeyu, Ding Han.Survey on uncalibrated robot visual servoing control.Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 767-783 (in Chinese))
    [3] 王冬,吴军,王立平等. 3-PRS并联机器人惯量耦合特性研究. 力学学报, 2016, 48(4): 804-812
    [3] (Wang Dong, Wu Jun, Wang Liping, et al.research on the inertia coupling property of a 3-PRS parallel robot.Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 804-812 (in Chinese))
    [4] 胡凌云, 孙增圻. 双足机器人步态控制研究方法综述. 计算机研究与发展, 2005, 42(5): 728-733
    [4] (Hu Lingyun, Sun Zengxi.Survey on gait control strategies for biped robot.Journal of Computer Research and Development, 2005, 42(5): 728-733 (in Chinese))
    [5] Alcaraz-Jimenez JJ, Herrero-Perez D, Martinez-Barbera H.Robust feedback control of ZMP-based gait for the humanoid robot Nao.The International Journal of Robotics Research, 2013, 32(9-10): 1074-1088
    [6] Hurmuzlu Y, Génot F, Brogliato B.Modeling, stability and control of biped robots-a general framework.Automatica, 2004, 40(10): 1647-1664
    [7] 田彦涛, 孙中波, 李宏扬等. 动态双足机器人的控制与优化研究进展. 自动化学报, 2016, 42(8): 1142-1157
    [7] (Tian Yantao, Sun Zhongbo, Li Hongyang, et al.A review of optimal and control strategies for dynamic walking bipedal robots.Acta Automatica Sinica, 2016, 42(8): 1142-1157 (in Chinese))
    [8] Yazdani M, Salarieh H, Saadat Foumani M.Decentralized control of rhythmic activities in fully-actuated/under-actuated robots.Robotics and Autonomous Systems, 2018, 101: 20-33
    [9] Spong MW, Bullo F.Controlled symmetries and passive walking.IEEE Transactions on Automatic Control, 2005, 50(7): 1025-1031
    [10] Ames AD, Sinnet RW, Wendel EDB.Three-dimensional kneed bipedal walking: A hybrid geometric Approach//Hybrid Systems: Computation and Control, International Conference, HSCC 2009, San Francisco, CA, USA, April 13-15, 2009: 16-30
    [11] Gregg RD, Spong MW.Reduction-based control of three-dimensional bipedal walking robots.International Journal of Robotics Research, 2010, 29(6): 680-702
    [12] Manchester IR, Mettin U, Iida F, et al.Stable dynamic walking over uneven terrain.International Journal of Robotics Research, 2011, 30(3): 265-279
    [13] Westervelt ER, Grizzle JW, Koditschek DE.Hybrid zero dynamics of planar biped walkers.IEEE Transactions on Automatic Control, 2003, 48(1): 42-56
    [14] Morris B, Grizzle JW.Hybrid invariant manifolds in systems with impulse effects with application to periodic locomotion in bipedal robots.IEEE Transactions on Automatic Control, 2009, 54(8): 1751-1764
    [15] Chevallereau C, Abba G, Aoustin Y, et al.Rabbit: a testbed for advanced control theory.IEEE Control Systems Magazine, 2003, 23(5): 57-79
    [16] Sreenath K, Park HW, Poulakakis I, et al.Embedding active force control within the compliant hybrid zero dynamics to achieve stable, fast running on MABEL.International Journal of Robotics Research, 2013, 32(3): 324-345.
    [17] Martin E, Post DC, Schmiedeler JP.The effects of foot geometric properties on the gait of planar bipeds walking under HZD-based control.International Journal of Robotics Research, 2014, 33(12): 1530-1543
    [18] Gregg RD, Lenzi T, Hargrove LJ, et al.Virtual constraint control of a powered prosthetic leg: From simulation to experiments with transfemoral amputees.IEEE Transactions on Robotics, 2014, 30(6): 1455-1471
    [19] Zhao H, Horn J, Reher J, et al.Multicontact locomotion on transfemoral prostheses via hybrid system models and optimization-based control.IEEE Transactions on Automation Science & Engineering, 2016, 13(2): 502-513
    [20] Zhao H, Ambrose E, Ames AD.Preliminary results on energy efficient 3D prosthetic walking with a powered compliant transfemoral prosthesis// IEEE International Conference on Robotics and Automation, 2017, Singapore, 2017,IEEE, 2017:1140-1147
    [21] Agrawal A, Harib O, Hereid A, et al.First steps towards translating HZD control of bipedal robots to decentralized control of exoskeletons.IEEE Access, 2017, 5(1): 9919-9934
    [22] Chevallereau C, Grizzle JW, Shih CL.Asymptotically stable walking of a five-link underactuated 3-D bipedal robot.IEEE Transactions on Robotics, 2009, 25(1): 37-50
    [23] Ramezani A, Hurst JW, Hamed KA, et al.Performance analysis and feedback control of ATRIAS, a three-dimensional bipedal robot.Journal of Dynamic Systems Measurement & Control, 2013, 136(2): 729-736
    [24] Griffin B, Grizzle J.Walking gait optimization for accommodation of unknown terrain height variations// American Control Conference (ACC), Chicago IL USA,IEEE, 2015: 4810-4817
    [25] Dai H, Tedrake R.L2-gain optimization for robust bipedal walking on unknown terrain// Robotics and Automation (ICRA), 2013 IEEE International Conference on,Karlsruhe Germany, IEEE, 2013: 3116-3123
    [26] 李超. 欠驱动双足机器人动态步行规划与抗扰动控制. [博士论文]. 杭州:浙江大学, 2015
    [26] (Li Chao.Dynamic locomotion and anti-disturbance control of underactuated biped robots. [PhD Thesis]. Hangzhou: Zhejiang University, 2015 (in Chinese))
    [27] Li C, Xiong R, Zhu QG, et al.Push recovery for the standing under-actuated bipedal robot using the hip strategy.Frontiers of Information Technology & Electronic Engineering, 2015, 16(7): 579-593
    [28] Chen Z, Lakbakbi Elyaaqoubi N, Abba G.Optimized 3D stable walking of a bipedal robot with line-shaped massless feet and sagittal underactuation.Robotics and Autonomous Systems, 2016, 83: 203-213
    [29] Maggiore M, Consolini L.Virtual molonomic constraints for Euler-Lagrange systems.IEEE Transactions on Automatic Control, 2013, 58(4): 1001-1008
    [30] Westervelt ER, Grizzle JW, Koditschek DE.Hybrid zero dynamics of planar biped walkers.IEEE Transactions on Automatic Control, 2003, 48(1): 42-56
    [31] Asano F.Fully analytical solution to discrete behavior of hybrid zero dynamics in limit cycle walking with constraint on impact posture.Multibody System Dynamics, 2015, 35(2): 191-213
    [32] Westervelt ER, Morris B, Farrell KD.Analysis results and tools for the control of planar bipedal gaits using hybrid zero dynamics.Autonomous Robots, 2007, 23(2): 131-145
    [33] Grizzle JW, Westervelt ER, Canudas-De-Wit C. Event-based PI control of an underactuated biped walker//Decision and Control, 2003, Proceedings. 42nd IEEE Conference on, Maui HI USA, IEEE, 2003: 3091-3096
    [34] Hamed KA, Buss BG, Grizzle JW.Exponentially stabilizing continuous-time controllers for periodic orbits of hybrid systems: Application to bipedal locomotion with ground height variations.International Journal of Robotics Research, 2016, 35(8): 977-999
  • 期刊类型引用(3)

    1. 胡棚辉,胡开鑫. 黏弹性双自由面热毛细液层的不稳定性. 空间科学学报. 2023(04): 683-693 . 百度学术
    2. 周游,曾忠,刘浩,张良奇. 高径比对GaAs熔体液桥热毛细对流失稳的影响. 力学学报. 2022(02): 301-315 . 本站查看
    3. 栾致漫. 双层系统内Jeffreys流体的Rayleigh-Marangoni对流不稳定性分析. 吉林大学学报(理学版). 2022(06): 1430-1438 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  1672
  • HTML全文浏览量:  230
  • PDF下载量:  395
  • 被引次数: 3
出版历程
  • 刊出日期:  2018-07-17

目录

    /

    返回文章
    返回