EI、Scopus 收录
中文核心期刊

空间机器人双臂捕获卫星力学分析及镇定控制

程靖, 陈力

程靖, 陈力. 空间机器人双臂捕获卫星力学分析及镇定控制[J]. 力学学报, 2016, 48(4): 832-842. DOI: 10.6052/0459-1879-16-156
引用本文: 程靖, 陈力. 空间机器人双臂捕获卫星力学分析及镇定控制[J]. 力学学报, 2016, 48(4): 832-842. DOI: 10.6052/0459-1879-16-156
Cheng Jing, Chen Li. MECHANICAL ANALYSIS AND CALM CONTROL OF DUAL-ARM SPACE ROBOT FOR CAPTURING A SATELLITE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 832-842. DOI: 10.6052/0459-1879-16-156
Citation: Cheng Jing, Chen Li. MECHANICAL ANALYSIS AND CALM CONTROL OF DUAL-ARM SPACE ROBOT FOR CAPTURING A SATELLITE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 832-842. DOI: 10.6052/0459-1879-16-156
程靖, 陈力. 空间机器人双臂捕获卫星力学分析及镇定控制[J]. 力学学报, 2016, 48(4): 832-842. CSTR: 32045.14.0459-1879-16-156
引用本文: 程靖, 陈力. 空间机器人双臂捕获卫星力学分析及镇定控制[J]. 力学学报, 2016, 48(4): 832-842. CSTR: 32045.14.0459-1879-16-156
Cheng Jing, Chen Li. MECHANICAL ANALYSIS AND CALM CONTROL OF DUAL-ARM SPACE ROBOT FOR CAPTURING A SATELLITE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 832-842. CSTR: 32045.14.0459-1879-16-156
Citation: Cheng Jing, Chen Li. MECHANICAL ANALYSIS AND CALM CONTROL OF DUAL-ARM SPACE ROBOT FOR CAPTURING A SATELLITE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 832-842. CSTR: 32045.14.0459-1879-16-156

空间机器人双臂捕获卫星力学分析及镇定控制

基金项目: 国家自然科学基金(11372073,11072061) 和福建省工业机器人基础部件技术重大研发平台(2014H21010011) 资助项目.
详细信息
    通讯作者:

    陈力,教授,主要研究方向:空间机器人系统动力学与控制.E-mail:chnle@fzu.edu.cn

  • 中图分类号: TP241

MECHANICAL ANALYSIS AND CALM CONTROL OF DUAL-ARM SPACE ROBOT FOR CAPTURING A SATELLITE

  • 摘要: 随着航天技术的发展,空间机器人要求具有对非合作卫星的在轨捕获能力. 双臂空间机器人与单臂空间机器人相比在这方面显然更具有优势. 然而由于太空环境的复杂性,使得空间机器人双臂捕获非合作卫星操作过程的动力学与控制问题表现出下述特点:非完整动力学约束,动量、动量矩与能量传递变化,捕获前后结构开、闭环变拓扑,与闭环接触几何、运动学约束多者共存. 因此空间机器人双臂捕获卫星技术相关动力学与控制问题变得极其复杂. 为此,讨论了双臂空间机器人捕获自旋卫星过程的动力学演化模拟,以及捕获操作后其不稳定闭链混合体系统的镇定控制问题. 首先,利用拉格朗日第二类方程建立了捕获操作前双臂空间机器人的开环系统动力学模型,利用牛顿-欧拉法建立了目标卫星的系统动力学模型;在此基础上基于动量守恒定律、力的传递规律,经过积分与简化处理分析、求解了双臂空间机器人捕获目标卫星后受到的碰撞冲击效应,给出了合适的捕获操作策略. 根据闭链系统的闭环约束几何及运动学关系获得了闭合链约束方程,推导了捕获操作后闭链混合体系统的动力学方程. 最后基于该动力学方程针对捕获操作结束后失稳的闭链混合体系统,设计了镇定运动模糊H 控制方案. 提出的方案利用模糊逻辑环节克服参数不确定影响,由H 鲁棒控制项消除逼近误差来保证系统控制精度;通过最小权值范数法分配各臂关节力矩,以保证两臂协同操作. 李雅普诺夫稳定性理论证明了系统的全局稳定性. 最后通过数值仿真实验模拟、分析了碰撞冲击响应,并验证了上述镇定运动控制方案的有效性.
    Abstract: As the technology of space science develops rapidly, space robot system is expected to capture the noncooperative satellite on-orbit. Space robot with dual-arm obviously has more comparative advantage in this respect compared with the one with single arm. Because of the complicated condition in outer space it makes the dynamics and control problems related to satellite-capturing operation by space robot system with dual-arm to be extremely complicated, and there are some unique characteristics, such as, nonholonomic dynamics restriction, change of system configuration, transfer of linear momentum, angular momentum and energy, topology transfer from open to closed loop system, and the constraints of closed-loop geometry and kinematics during satellite-capturing operation. In this paper, the dynamic evolution for space robot with dual-arm capturing a spin satellite and calm control for unstable closed chain composite system are discussed. At first, with the Lagrangian approach, the dynamic model of open chain space robot with dual-arm before capture operation is established, and dynamic model of satellite is derived by Newton-Euler method. On that basis, based on the law of conservation of momentum and the law of force transfer, the impact effect after collision of space robot with dual-arm to capture the target is analyzed and solved by the process of integration and simplification, and the suitable capture operation strategy is given. Closed chain constraint equations are obtained by the constraints of closed-loop geometry and kinematics of closed chain system. With the closed chain constraint equations, the composite system dynamic model is derived. For the unstable closed chain composite system after the capture, the fuzzy H control scheme for calm motion is designed. The fuzzy logic system is applied to overcome the influence of uncertainty part and the robust H control item is used to eliminate the approximate error, to guarantee the tracking precision. The global stability of the system is proved by the Lyapunov theory. The weighted minimum-norm theory is introduced to distribute torques guaranteeing that the cooperative operation between manipulators. At last, numerical examples simulated the response of collision are used to verify the efficiency of the control scheme.
  • 1 Abad AF, Ma O, Pham K, et al. A review of space robotics technologies for on-orbit servicing. Progress in Aerospace Sciences, 2014, 68: 1-26
    2 Yoshida K, Nakanishi H, Ueno N, et al. Dynamics, control and impedance matching for robotic capture of a non-cooperative satellite. Advanced Robotics, 2004, 2(2): 175-198
    3 Walker MW. Adaptive control of space-based robot manipulators. IEEE Transactions on Robotics and Automation, 1992, 7(6): 828-835
    4 谢立敏, 陈力. 漂浮基柔性空间机器人的鲁棒控制及振动抑制. 力学学报, 2012, 44(3): 1057-1065 (Xie Limin, Chen Li. Robust control and vibration suppression of free-floating flexible space robot. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(3): 1057-1065 (in Chinese))
    5 Narikiyo T, Ohmiya M. Control of a planar space robot: Theory and experiments. Control Engineering, 2006, 8(14): 875-883
    6 程靖, 陈力. 漂浮基空间机器人捕获卫星过程冲击动力学建模及基于非线性滤波器的镇定运动控制. 载人航天, 2016, 22(1): 34-38 (Cheng Jing, Chen Li. Impact dynamic calming control based on nonlinear filter for free-floating space robot capturing a satellite. Manned Spaceflight, 2016, 22(1): 34-38 (in Chinese))
    7 王靖森, 刘晓峰, 段柳成等. 考虑关节摩擦的空间机器人动力学建模与参数辨识. 力学季刊, 2015, 36(44): 594-601 (Wang Jingsen, Liu Xiaofeng, Duan Liucheng, et al. Dynamic modeling and parameter identification of a space robot considering joint friction. Chinese Quarter of Mechanics, 2015, 36(44): 594-601 (in Chinese))
    8 戈新生, 孙鹏伟. 自由漂浮空间机械臂非完整运动规划的粒子群优化算法. 机械工程学报, 2007, 43(4): 34-38 (Ge Xinsheng, Sun Pengwei. Nonholonomic motion planning of space manipulator system using particle swarm optimization. Chinese Journal of Mechanical Engineering, 2007, 43(4): 34-38 (in Chinese))
    9 Dubanchet V, Saussie D, Alazard D, et al. Modeling and control of a space robot for active debris removal. CEAS Space Journal, 2015, 7(2): 203-218
    10 Chen J, Chen L. Decentralized adaptive neural network stabilization control and vibration suppression of flexible robot manipulator during capture a target.//The 66rd International Astronautical Congress. Jerusalem, 2015
    11 Oki T, Nakanishi H, Youshida K. Whole-body motion control for capturing a tumbling target by a free-floating space robot.//Proceeding of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA: IEEE, 2007: 2256-2261
    12 Rekleitis, G, Papadopoulos E. On orbit cooperating space robotic servicers handling a passive object. IEEE Transaction on Aerospace and Electronic System, 2015, 51(2): 803-814
    13 Debus TJ, Dougherty SP. Overview and performance of the frontend robotics enabling near-term demonstration (FREND) robotic arm. In: AIAA Infotech and Aerospace Conference. Seattle, Washington, USA: AIAA, 2009: 2009-1870
    14 Barnhart D, Sullivan B, Hunter R, et al. Phoenix Program Status-2013. In: AIAA Space 2013 Conference and Exposition, San Diego, CA: AIAA, 2013: 1-17
    15 Reintsema D, Thaeter J, Rathke A, et al. DEOS-the German robotics approach to secure and de-orbit malfunctioned satellites from low earth orbit.//The 10th International Symposium on Artificial Intelligence, Robotics and Automation in Space. Sapporo, Japan, 2010: 244-251
    16 Kaiser C, Berg F, Delcura JM, et al. SMART-OLEV-An orbit life extension vehicle for servicing commercial spacecrafts in GEO. Acta Astronautica, 2008, 63: 400-410
    17 Sachdev S, Marcotte B, Gibbs G. Canada and the international space station program: overview and status.//International Astronautical Federation-55th International Astronautical Congress 2004. Paris, France: IAF, 2004: 7405-7415
    18 Afanasiev V, Braigozin D, Kazanski I, et al. RTR-trees for robotics behavior simulation and visualization. Visual Computer, 2007, 23(2): 347-358
    19 Quiocho LJ, Huynh A, Edwin Z. Application of multibody dynamics to on-orbit manipulator simulations.//ASME 2005 International Design Engineering Technical Conferences. Long Beach, California: ASME. 2005: 81-87
    20 Obermark J, Greamer G, Kelm BE, et al. SUMO/FREND: vision system for autonomous satellite grapple.//Proceeding of SPIESensor and System for Space Applications. Orlando, Florida: SPIE, 2007: 65550Y-1–65550Y-11
    21 Rathee R, Pathak P. Dual arm free flying space robot trajectory planning using polynomial. Journal of Robotics, 2015: 1-11
    22 梁捷, 陈力. 基于标称计算力矩控制器的双臂空间机器人惯性空间轨迹跟踪的模糊自适应补偿控制. 工程力学, 2010, 27(11): 221-228. (Liang Jie, Chen Li. Fuzzy logic adaptive compensation control for duan-arm space robot based on computed torque control to track desired trajectory in inertia space. Enigieering Mechanics, 2010, 27(11): 221-228 (in Chinese))
    23 陈志勇, 陈力. 具有外部扰动及不确定载荷参数双臂空间机器人的拟增广鲁棒与自适应混合控制. 工程力学, 2010, 27(12): 27-33. (Chen Zhiyong, Chen Li. Robusted-adaptive combined control for dual-arm space robot with external disturbances and uncertain parameters. Engineering Mechanics, 2010, 27(12): 27-33 (in Chinese))
    24 Takahashi R, Ise H, Sato D, et al. Hybrid simulation of a dual-arm space robot colliding with a floating object. In: Proceeding of the 2008 IEEE International Conference on Robotics and Automation. Pasadena: IEEE, 2008: 1202-1206
    25 Shah SV, Sharf I, Misra AK. Reactionless path planning strategies for capture of tumbling objects in space using a dual-arm robotic system. In: AIAA Guidance, Navigation, and Control (GNC) Conference, Guidance, Navigation, and Control and Co-located Conferences, Boston, MA: AIAA, 2013-4521
    26 郭闻昊, 王天舒. 空间机器人抓捕目标星碰撞前构型优化. 宇航学报, 2015, 36(4), 390-396 (Guo Wenhao, Wang Tianshu. Pre-impact configuration optimization for a space robot capturing target satellite. Journal of Astronautics, 2015, 36(4): 390-396 (in Chinese))
    27 Jia YH, Hu Q, Xu SJ. Dynamics and adaptive control of a dual-arm space robot with closed-loop constraints and uncertain inertial parameters. Acta Mechanica Sinica, 2014, 30(1): 112-124
    28 Moosavian SF, Papadoupoulos E. On the control of space free-flyer using multiple impedance control. In: Proceeding of the 1997 IEEE International Conference on Robotics and Automation. Albuquerque, New Mexico: IEEE, 1997: 853-858
    29 Passino KM. Fuzzy Control. New York: Addison Wesley Longman Press, 1998
    30 Kovacic Z, Bojdan S. Fuzzy Controller Design Theory and Application. Florida: CRC Press, 2005
    31 Wang LX. Stable adaptive fuzzy control of nonlinear systems. IEEE Transaction on Fuzzy Systems, 1993, 1(2): 146-155
    32 Rubaai A. Direct adaptive fuzzy control design achieving H1 tracking for high performance servo drives. IEEE Transaction on Energy Conversion, 1999, 14(4): 1199-1208
  • 期刊类型引用(26)

    1. 刘东博,陈力. 基于模糊逻辑的双臂空间机器人在轨辅助对接操作变结构力/位控制. 机械工程学报. 2025(01): 60-70 . 百度学术
    2. 刘东博,陈力. 面向在轨组装服务的空间机器人动力学分析及抑振阻抗控制设计. 力学季刊. 2024(03): 688-696 . 百度学术
    3. 曾晨东,陈力. 空间机械臂在轨插、拔孔操作基于力/位姿跟踪指数型阻抗控制. 工程科学学报. 2022(02): 254-264 . 百度学术
    4. 朱安,陈力. 配置弹簧阻尼装置空间机器人双臂捕获卫星操作缓冲柔顺控制. 控制理论与应用. 2022(01): 117-129 . 百度学术
    5. 朱安,陈力. 配置弹簧阻尼空间机器人基于灰狼优化算法的双臂捕获卫星操作缓冲柔顺控制. 控制与决策. 2022(11): 2779-2789 . 百度学术
    6. 王琪,孔德彭. 自由漂浮双臂空间机器人末端轨迹跟踪控制. 机械设计与制造. 2022(12): 68-72 . 百度学术
    7. 艾海平,陈力. 空间机器人捕获航天器操作的避撞柔顺复合自抗扰控制. 控制与决策. 2021(02): 355-362 . 百度学术
    8. 夏鹏程,罗建军,王明明. 空间双臂机器人抓捕翻滚目标后的鲁棒稳定控制. 力学学报. 2021(04): 1138-1155 . 本站查看
    9. 付晓东,陈力. 全柔性空间机器人运动振动一体化输入受限重复学习控制. 力学学报. 2020(01): 171-183 . 本站查看
    10. 余敏,罗建军,王明明,高登巍. 一种改进RRT~*结合四次样条的协调路径规划方法. 力学学报. 2020(04): 1024-1034 . 本站查看
    11. 艾海平,陈力. 基于柔性机构捕捉卫星的空间机器人动态缓冲从顺控制. 力学学报. 2020(04): 975-984 . 本站查看
    12. 朱安,陈力. 含弹簧阻尼缓冲机构空间机器人捕获卫星操作的避撞柔顺强化学习控制. 控制理论与应用. 2020(08): 1727-1736 . 百度学术
    13. 冯钧,孔建寿,王刚. 一种柔性空间双臂机器人的协同控制和避障方法. 空间控制技术与应用. 2020(05): 10-17 . 百度学术
    14. 朱安,陈力. 含弹簧阻尼装置空间机器人捕获卫星操作力学分析及缓冲、柔顺控制. 工程力学. 2020(12): 202-212 . 百度学术
    15. 张建华,许晓林,刘璇,张明路. 双臂协调机器人相对动力学建模. 机械工程学报. 2019(03): 34-42 . 百度学术
    16. 雷荣华,陈力. 基于状态观测的双臂空间机器人分散容错控制. 中国惯性技术学报. 2019(02): 248-254 . 百度学术
    17. 朱安,陈力. 配置柔顺机构空间机器人双臂捕获卫星操作力学模拟及基于神经网络的全阶滑模避撞柔顺控制. 力学学报. 2019(04): 1156-1169 . 本站查看
    18. 黄小琴,陈力. 基座、臂杆全弹性空间机器人的递归CMACNN控制. 系统仿真学报. 2019(09): 1899-1906 . 百度学术
    19. 艾海平,陈力. 空间机器人捕获航天器后基于无源性理论的鲁棒镇定控制. 计算力学学报. 2019(06): 727-732 . 百度学术
    20. 葛一敏,袁海辉,甘春标. 基于步态切换的欠驱动双足机器人控制方法. 力学学报. 2018(04): 871-879 . 本站查看
    21. 程靖,陈力. 空间机器人双臂捕获卫星后辅助对接操作控制仿真. 系统仿真学报. 2018(09): 3429-3436 . 百度学术
    22. 黄小琴,陈力. 基于递归小脑神经网络模型控制的空间机器人关节抗死区及摩擦控制. 中国机械工程. 2018(02): 211-217 . 百度学术
    23. 黄小琴,陈力. 存在关节力矩输出死区及外部干扰的漂浮基空间机械臂积分滑模神经网络自适应控制. 计算力学学报. 2018(06): 713-718 . 百度学术
    24. 陈帅,廖育荣,倪淑燕,李春月. 多站仅测速实时定轨的容积卡尔曼滤波方法. 电子设计工程. 2018(22): 117-121 . 百度学术
    25. 程靖,陈力. 空间机器人双臂捕获航天器后姿态管理、辅助对接操作一体化ELM神经网络控制. 机器人. 2017(05): 724-732 . 百度学术
    26. 戴巧莲,陈力. 基于干扰观测器的柔性关节空间机器人退步自适应控制. 力学与实践. 2016(04): 386-390+397 . 百度学术

    其他类型引用(12)

计量
  • 文章访问数:  1383
  • HTML全文浏览量:  174
  • PDF下载量:  1922
  • 被引次数: 38
出版历程
  • 收稿日期:  2016-06-05
  • 修回日期:  2016-06-12
  • 刊出日期:  2016-07-17

目录

    /

    返回文章
    返回