EI、Scopus 收录
中文核心期刊

ANCF索梁单元应变耦合问题与模型解耦

张越, 赵阳, 谭春林, 刘永健

张越, 赵阳, 谭春林, 刘永健. ANCF索梁单元应变耦合问题与模型解耦[J]. 力学学报, 2016, 48(6): 1406-1415. DOI: 10.6052/0459-1879-16-127
引用本文: 张越, 赵阳, 谭春林, 刘永健. ANCF索梁单元应变耦合问题与模型解耦[J]. 力学学报, 2016, 48(6): 1406-1415. DOI: 10.6052/0459-1879-16-127
Zhang Yue, Zhao Yang, Tan Chunlin, Liu Yongjian. THE STRAIN COUPLING PROBLEM AND MODEL DECOUPLING OF ANCF CABLE/BEAM ELEMENT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1406-1415. DOI: 10.6052/0459-1879-16-127
Citation: Zhang Yue, Zhao Yang, Tan Chunlin, Liu Yongjian. THE STRAIN COUPLING PROBLEM AND MODEL DECOUPLING OF ANCF CABLE/BEAM ELEMENT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1406-1415. DOI: 10.6052/0459-1879-16-127
张越, 赵阳, 谭春林, 刘永健. ANCF索梁单元应变耦合问题与模型解耦[J]. 力学学报, 2016, 48(6): 1406-1415. CSTR: 32045.14.0459-1879-16-127
引用本文: 张越, 赵阳, 谭春林, 刘永健. ANCF索梁单元应变耦合问题与模型解耦[J]. 力学学报, 2016, 48(6): 1406-1415. CSTR: 32045.14.0459-1879-16-127
Zhang Yue, Zhao Yang, Tan Chunlin, Liu Yongjian. THE STRAIN COUPLING PROBLEM AND MODEL DECOUPLING OF ANCF CABLE/BEAM ELEMENT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1406-1415. CSTR: 32045.14.0459-1879-16-127
Citation: Zhang Yue, Zhao Yang, Tan Chunlin, Liu Yongjian. THE STRAIN COUPLING PROBLEM AND MODEL DECOUPLING OF ANCF CABLE/BEAM ELEMENT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1406-1415. CSTR: 32045.14.0459-1879-16-127

ANCF索梁单元应变耦合问题与模型解耦

基金项目: 国家重点基础研究发展计划(973计划)(2013CB733004)和微小型航天器技术国防重点学科实验室开放基金(HIT.KLOF.MST.201508)资助项目.
详细信息
    通讯作者:

    赵阳,教授,主要研究方向:复杂航天器系统动力学.E-mail:yangzhao@hit.edu.cn

  • 中图分类号: O313.7;O326

THE STRAIN COUPLING PROBLEM AND MODEL DECOUPLING OF ANCF CABLE/BEAM ELEMENT

  • 摘要: 索梁结构在土木工程、航空航天等领域有着广泛的应用.在各类索梁动力学建模方法中,由于绝对节点坐标方法(absolute nodal coordinate formulation,ANCF)能够描述柔性体的大变形和大转动问题,因此非常适合大变形索梁结构的动力学建模.对绝对节点坐标索梁单元的应变进行分析可知,弯曲变形会引起单元内部轴向应变的不均匀分布,即单元轴向应变与弯曲应变相互耦合.这种应变耦合效应使单元产生伪应变能,导致单元刚度增大,造成单元失真.分析不同弯曲角下的单元应变及应变能可知,弯曲变形越大,单元失真越严重.通过构造等效一维杆单元重新描述轴向应变,实现了轴向应变与弯曲应变解耦.在此基础上推导广义弹性力,得到了绝对节点坐标索梁单元的应变解耦模型.对解耦前后的两种梁模型进行静力学和动力学仿真,结果表明:解耦模型消除了单元伪应变,相比原模型表现出更好的收敛性和曲率连续性,在相同单元数目下具有更高的精度.同时由于解耦模型降低了单元刚度,因此相比原模型,速度曲线中不再有高频振动.
    Abstract: The cable/beam structure has already been widely applied in civil engineering, aerospace engineering, etc. Among various dynamic modeling methods of cable/beam, the Absolute Nodal Coordinate Formulation (ANCF) is very suitable for the modeling of large deformed cable/beam to describe the large deformation and rotation of flexible bodies. According to the strain analysis of ANCF cable/beam element, the bending deformation will cause uneven distribution of axial strain within the element, which means axial and bending strains are coupled with each other. The strain coupling effect brings unrealistic strain energy to the element, resulting in an increased stiffness and element distortion. It is known from the analysis of strain and strain energy at various bending angles that the larger the bending deformation is, the more serious the distortion is. The axial and bending strains are decoupled by redescribing axial strain based on a new constructed equivalent 1D rod element. Then the generalized elastic force is deduced and the strain-decoupled model of ANCF cable/beam element is obtained. The statics and dynamics simulations of two beam models are conducted and the results indicate that the unrealistic strain is eliminated by the decoupled model, and compared with the original model, the decoupled model shows better convergence and curvature continuity and more accurate under same number of elements. Meanwhile, as the stiffness is reduced by the decoupled model, there is no high frequency vibration in the velocity curve any more by compared with the original model.
  • 1 Shabana AA. Flexible multibody dynamics:review of past and recent developments. Multibody System Dynamics, 1997, 1(2):189-222
    2 田强. 基于绝对节点坐标方法的柔性多体系统动力学研究与应用.[博士论文]. 武汉:华中科技大学, 2009(Tian Qiang. Flexible multibody dynamics research and application based on the absolute nodal coordinate method.[PhD Thesis]. Wuhan:Huazhong University of Science and Technology, 2009(in Chinese))
    3 Shabana AA. An absolute nodal coordinate formulation for the large rotation and large deformation analysis of flexible bodies. Technical Report No. MBS96-1-UIC, Department of Mechanical Engineering, University of Illinois at Chicago, 1996
    4 Shabana AA. Definition of the slopes and the finite element absolute nodal coordinate formulation. Multibody System Dynamics, 1997, 1(3):339-348
    5 Shabana AA. Definition of ANCF finite elements. Journal of Computational and Nonlinear Dynamics, 2015, 10(5):054506
    6 陈思佳,章定国,洪嘉振. 大变形旋转柔性梁的一种高次刚柔耦合动力学模型. 力学学报, 2013, 45(2):251-256(Chen Sijia, Zhang Dingguo, Hong Jiazhen. A high-order rigid-flexible coupling model of a rotating flexible beam under large deformation. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2):251-256(in Chinese))
    7 章孝顺,章定国,洪嘉振. 考虑曲率纵向变形效应的大变形柔性梁刚-柔耦合动力学建模与仿真. 力学学报, 2016, 48(3):1-11 (Zhang Xiaoshun, Zhang Dingguo, Hong Jiazhen. Rigid-flexible coupling dynamic modeling and simulation with the longitudinal deformation induced curvature effect for a rotating flexible beam under large deformation. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3):1-11(in Chinese))
    8 Shabana AA, Yakoub RY. Three dimensional absolute nodal coordinate formulation for beam elements:theory. Journal of Mechanical Design, 2001, 123(4):606-613
    9 Yakoub RY, Shabana AA. Three dimensional absolute nodal coordinate formulation for beam elements:implementation and applications. Journal of Mechanical Design, 2000, 123(4):614-621
    10 Gerstmayr J, Shabana AA. Analysis of thin beams and cables using the absolute nodal coordinate formulation. Nonlinear Dynamics, 2006, 45(1-2):109-130
    11 朱大鹏,路英杰,汤家力等. 大变形索梁单元在多体动力学框架下的应用//2007全国结构动力学学术研讨会论文集, 南昌, 2007 年11月(Zhu Dapeng, Lu Yingjie, Tang Jiali, et al. Application of large deformation cable beam element in multibody dynamics//Proceedings of the 2007 National Symposium on Structural Dynamics, Nanchang, 2007-11(in Chinese))
    12 Dombrowski SV. Analysis of large flexible body deformation in multibody systems using absolute coordinates. Multibody System Dynamics, 2002, 8(4):409-432
    13 Liu C, Tian Q, Hu HY. New spatial curved beam and cylindrical shell elements of gradient-deficient absolute nodal coordinate formulation. Nonlinear Dynamics, 2012, 70(3):1903-1918
    14 Dmitrochenko O, Mikkola A. Digital nomenclature code for topology and kinematics of finite elements based on the absolute nodal coordinate formulation. Journal of Multi-body Dynamics, 2011, 225(1):34-51
    15 Kerkkänen KS, García-Vallejo D, Mikkola AM. Modeling of beltdrives using a large deformation finite element formulation. Nonlinear Dynamics, 2006, 43(3):239-256
    16 ?epon G, Bolte?ar M. Dynamics of a belt-drive system using a linear complementarity problem for the belt-pulley contact description. Journal of Sound and Vibration, 2009, 319(3):1019-1035
    17 ?epon G, Manin L, Bolte?ar M. Introduction of damping into the flexible multibody belt-drive model:a numerical and experimental investigation. Journal of Sound and Vibration, 2009, 324(1):283-296
    18 Lugris U, Escalona J, Dopico D, et al. Efficient and accurate simulation of the cable-pulley interaction in weight-lifting machines//1st Joint International Conference on Multibody System Dynamics, Lappeenranta, Finland, 2010
    19 Kim KW, Lee JW, Yoo WS. The motion and deformation rate of a flexible hose connected to a mother ship. Journal of Mechanical Science and Technology, 2012, 26(3):703-710
    20 Tur M, García E, Baeza L, et al. A 3D absolute nodal coordinate finite element model to compute the initial configuration of a railway catenary. Engineering Structures, 2014, 71:234-243
    21 Vohar B, Kegl M, Ren Z. Implementation of an ANCF beam finite element for dynamic response optimization of elastic manipulators. Engineering Optimization, 2008, 40(12):1137-1150
    22 Sanborn GG, Choi J, Choi JH. Curve-induced distortion of polynomial space curves, flat-mapped extension modeling, and their impact on ANCF thin-plate finite elements. Multibody System Dynamics, 2011, 26(2):191-211
    23 Sopanen JT, Mikkola AM. Description of elastic forces in absolute nodal coordinate formulation. Nonlinear Dynamics, 2003, 34(1-2):53-74
    24 Schwab AL, Meijaard JP. Comparison of three-dimensional flexible beam elements for dynamic analysis:finite element method and absolute nodal coordinate formulation//ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Long Beach, California, USA:ASME, 2005:1341-1349
    25 García-Vallejo D, Mikkola AM, Escalona JL. A new locking-free shear deformable finite element based on absolute nodal coordinates. Nonlinear Dynamics, 2007, 50(1-2):249-264
    26 Gerstmayr J, Matikainen MK, Mikkola AM. A geometrically exact beam element based on the absolute nodal coordinate formulation. Multibody System Dynamics, 2008, 20(4):359-384
    27 Nachbagauer K, Gruber P, Gerstmayr J. Structural and continuum mechanics approaches for a 3D shear deformable ANCF beam finite element:application to static and linearized dynamic examples. Journal of Computational and Nonlinear Dynamics, 2013, 8(2):021004
    28 于洋,宝音贺西,李俊峰. 空间飞网抛射展开动力学建模与仿真. 宇航学报, 2010, 31(5):1289-1296(Yu Yang, Baoyin Hexi, Li Junfeng. Modeling and simulation of projecting deployment dynamics of space webs. Journal of Astronautics, 2010, 31(5):1289-1296(in Chinese))
    29 张江. 空间绳网捕获过程碰撞动力学研究.[硕士论文]. 哈尔滨:哈尔滨工业大学, 2015(Zhang Jiang. Contact dynamics of space net on capturing target.[Master Thesis]. Harbin:Harbin Institute of Technology, 2015(in Chinese))
    30 Zhang Y, Wei C, Pan D, et al. A dynamical approach to space capturing procedure using flexible cables. Aircraft Engineering and Aerospace Technology, 2016, 88(1):53-65
    31 Tang JL, Ren GX, Zhu WD, et al. Dynamics of variable-length tethers with application to tethered satellite deployment. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(8):3411-3424
  • 期刊类型引用(7)

    1. 吴懋琦,谭述君,高飞雄. 基于绝对节点坐标法的平面梁有限变形下变形重构. 力学学报. 2021(10): 2776-2789 . 本站查看
    2. 曹登庆,白坤朝,丁虎,周徐斌,潘忠文,陈立群,詹世革. 大型柔性航天器动力学与振动控制研究进展. 力学学报. 2019(01): 1-13 . 本站查看
    3. 沈剑,武彦伟,高怀亮. 空间飞网捕获过程动力学研究. 兵器装备工程学报. 2019(12): 199-204 . 百度学术
    4. 过佳雯,魏承,谭春林,赵阳. 含芯拧绞绳非线性弯曲动力学特性分析与研究. 力学学报. 2018(02): 373-384 . 本站查看
    5. 陈渊钊,章定国,黎亮. 平面细长梁基于无网格径向基点插值的绝对节点坐标法. 振动工程学报. 2018(02): 245-254 . 百度学术
    6. 兰朋,崔雅琦,於祖庆. 完备化ANCF薄板单元及在钢板弹簧动力学建模中的应用. 力学学报. 2018(05): 1156-1167 . 本站查看
    7. 鄂薇,魏承,谭春林,张大伟,赵阳. 视觉物质点跟踪方法在柔索模型验证中的应用. 航空学报. 2017(12): 203-213 . 百度学术

    其他类型引用(5)

计量
  • 文章访问数:  1386
  • HTML全文浏览量:  149
  • PDF下载量:  735
  • 被引次数: 12
出版历程
  • 收稿日期:  2016-05-12
  • 修回日期:  2016-08-23
  • 刊出日期:  2016-11-17

目录

    /

    返回文章
    返回