EI、Scopus 收录
中文核心期刊

钝体射流火焰及其点火过程的大涡模拟

杨涛, 张健, 吕金明, 晋国栋

杨涛, 张健, 吕金明, 晋国栋. 钝体射流火焰及其点火过程的大涡模拟[J]. 力学学报, 2016, 48(6): 1290-1300. DOI: 10.6052/0459-1879-16-089
引用本文: 杨涛, 张健, 吕金明, 晋国栋. 钝体射流火焰及其点火过程的大涡模拟[J]. 力学学报, 2016, 48(6): 1290-1300. DOI: 10.6052/0459-1879-16-089
Yang Tao, Zhang Jian, Lü Jinming, Jin Guodong. LARGE-EDDY SIMULATION OF A BLUFF-BODY FLAME AND THE FORCED IGNITION PROCESS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1290-1300. DOI: 10.6052/0459-1879-16-089
Citation: Yang Tao, Zhang Jian, Lü Jinming, Jin Guodong. LARGE-EDDY SIMULATION OF A BLUFF-BODY FLAME AND THE FORCED IGNITION PROCESS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1290-1300. DOI: 10.6052/0459-1879-16-089
杨涛, 张健, 吕金明, 晋国栋. 钝体射流火焰及其点火过程的大涡模拟[J]. 力学学报, 2016, 48(6): 1290-1300. CSTR: 32045.14.0459-1879-16-089
引用本文: 杨涛, 张健, 吕金明, 晋国栋. 钝体射流火焰及其点火过程的大涡模拟[J]. 力学学报, 2016, 48(6): 1290-1300. CSTR: 32045.14.0459-1879-16-089
Yang Tao, Zhang Jian, Lü Jinming, Jin Guodong. LARGE-EDDY SIMULATION OF A BLUFF-BODY FLAME AND THE FORCED IGNITION PROCESS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1290-1300. CSTR: 32045.14.0459-1879-16-089
Citation: Yang Tao, Zhang Jian, Lü Jinming, Jin Guodong. LARGE-EDDY SIMULATION OF A BLUFF-BODY FLAME AND THE FORCED IGNITION PROCESS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1290-1300. CSTR: 32045.14.0459-1879-16-089

钝体射流火焰及其点火过程的大涡模拟

基金项目: 国家自然科学基金资助项目(51376190,11572330).
详细信息
    通讯作者:

    张健,副研究员,主要研究方向:湍流燃烧的大涡模拟.E-mail:zhangjian@lnm.imech.ac.cn

  • 中图分类号: V231.2

LARGE-EDDY SIMULATION OF A BLUFF-BODY FLAME AND THE FORCED IGNITION PROCESS

  • 摘要: 钝体燃烧器广泛应用于航空发动机、燃气轮机、锅炉等设备的燃烧室中.对其点火过程的了解和控制直接关系到设备的安全运行和污染物排放等重要问题.我们采用基于火焰面/过程变量燃烧模型的大涡模拟方法对湍流非预混钝体射流火焰及其点火过程进行了详细的数值模拟.以Sydney钝体燃烧器的无反应射流和有反应甲烷/氢气(CH4/H2)火焰为研究对象,首先通过统计平均的数值结果与实验测量及文献数据的对比,全面检验了所用数值方法和燃烧模型;随后,详细展示了钝体燃烧器点火和火焰发展的瞬态过程;最后,对钝体射流的点火过程进行了细致的分析和表征.根据温度峰值、羟基(OH)质量分数和甲醛(CH2O)质量分数峰值随时间的变化表征了强制点火过程的4个阶段:点火源衰减、点火触发、点火核生成和点火成功.其中,点火核驻留的空间位置位于钝体燃烧器冷态流场外侧涡的尾部回流区域附近.
    Abstract: Bluff-body burners are widely used in combustion chambers of industrial equipment such as jet engines, gas-turbines and boilers. Safe operation and low pollutant emission in these equipment directly demands understanding and controlling of ignition process in bluff-body burners. In this paper, a large-eddy simulation based on steady flamelet/progress variable approach was applied in a turbulent non-premixed bluff-body flame and its ignition process. Simulating two cases including non-reacting bluff-body flow (NRBB) and Sydney methane/hydrogen flame (HM1E), we comprehensively compared statistical results with experimental measures and previous numerical investigation. Then, we presented an instantaneous ignition process and flame development in Sydney bluff-body burner. Finally, the ignition process was analysed and characterized in detail, and a four-step process of flame ignition was proposed:decaying of ignition source, ignition initiation, generating of ignition kernel, and ignition success, which was identified by variation of peak values of temperature, OH and CH2O mass fraction. In addition, the ignition kernel stayed at the stern of the outer vortex in the recirculation zone of the cold flow of the bluff-body burner.
  • 1 Masri AR, Bilger RW. Turbulent non-premixed flames of hydrocarbon fuels near extinction:mean structure from probe measurements. Symposium (International) on Combustion, 1988, 21(1):1511-1520
    2 Masri AR, Kelman JB, Dally BB. The instantaneous spatial structure of the recirculation zone in bluff-body stabilized flames. Symposium (International) on Combustion, 1998, 27(1):1031-1038
    3 Dally BB, Masri AR, Barlow RS, et al. Instantaneous and mean compositional structure of bluff-body stabilized non-premixed flames. Combustion & Flame, 1998, 114(s 1-2):119-148
    4 Dally BB, Masri AR. Flow and mixing fields of turbulent bluff-body jets and flames. Combustion Theory & Modeling, 2006, 2(2):193-219
    5 Raman V, Pitsch H. Large-eddy simulation of a bluff-body-stabilized non-premixed flame using a recursive filter-refinement procedure. Combustion & Flame, 2005, 142(4):329-347
    6 Kim SH, Pitsch H. Mixing characteristics and structure of a turbulent jet diffusion flame stabilized on a bluff-body. Physics of Fluids, 2006, 18(18):3453-3475
    7 Pitsch H. Large-eddy simulation of turbulent combustion. Annual Review of Fluid Mechanics, 2006, 38(6):466-478
    8 Kempf AM, Lindstedt RP, Janicka J. Large eddy simulation of a bluff-body stabilized non-premixed flame. Combustion & Flame, 2006, 144(12):170-189
    9 黄庆, 朱旻明, 叶桃红等. 钝体驻定湍流扩散火焰的数值研究-燃烧模型比较. 计算物理, 2010, 27(2):229-239(Huang Qing, Zhu Minming, Ye Taohong, et al. Numerical simulation of bluff-body stabilized turbulent non-premixed flame:a comparison of combustion models. Chinese Journal of Computational Physics, 2010, 27(2):229-239(in Chinese))
    10 Kempf AM, Geurts BJ, Oefelein JC. Error analysis of large-eddy simulation of the turbulent non-premixed Sydney bluff-body flame. Combustion & Flame, 2011, 158(12):2408-2419
    11 Popov PP, Pope SB. Large eddy simulation/probability density function simulations of bluff-body stabilized flames. Combustion & Flame, 2014, 161(12):3100-3133
    12 Muradoglu M, Liu K, Pope SB. PDF modeling of a bluff-body stabilized turbulent flame. Combustion & Flame, 2003, 132(s 1-2):115-137
    13 张弛, 林宇震, 徐华胜等. 民用航空发动机低排放燃烧室技术发展现状及水平. 航空学报, 2014, 35(2):332-350(Zhang Chi, Lin Yuzhen, Xu Huasheng, et al. Development status and level of low emissions combustor technologies for civil aeroengine. Hangkong Xuebao/Acta Aeronautica Et Astronautica Sinica, 2014, 35(2):332-350 (in Chinese))
    14 Ahmed SF. Spark ignition of turbulent non-premixed flames.[PhD Thesis]. Cambrdge:University of Cambridge, 2007
    15 Mastorakos E. Ignition of turbulent non-premixed flames. Progress in Energy & Combustion Science, 2009, 35(1):57-97
    16 Triantafyllidis A, Mastorakos E, Eggels RLGM. Large eddy simulations of forced ignition of a non-premixed bluff-body methane flame with conditional moment closure. Combustion & Flame, 2009, 156(12):2328-2345
    17 Subramanian V, Domingo P, Vervisch L. Large eddy simulation of forced ignition of an annular bluff-body burner. Combustion & Flame, 2010, 157(3):579-601
    18 李明磊, 吴宁, 侯凌云等. 强湍流下点火及火焰传播机理研究进展. 实验流体力学, 2015(4):1-11(Li Minglei, Wu Ning, Hou Lingyun. et al. Research progress on ignition and flame propagation in highly turbulent flows. Journal of Experiments Fluid Mechanics, 2015, 29(4):1-11(in Chinese))
    19 Sjöholm J, Rosell J, Li B, et al. Simultaneous visualization of OH, CH, CH2O and toluene PLIF in a methane jet flame with varying degrees of turbulence. Proceedings of the Combustion Institute, 2013, 34(1):1475-1482
    20 Peters N. Laminar diffusion flamelet models in non-premixed turbulent combustion. Progress in Energy & Combustion Science, 1984, 10(3):319-339
    21 Pitsch H. FlameMaster v3.1:A C++ computer program for 0D combustion and 1D laminar flame calculations (1998). Available from http://www.stanford.edu/group/pitsch/
    22 Zhang J, He GW, Jin GD. An implicit relation between temperature and reaction rate in the SLFM. Theoretical & Applied Mechanics Letters, 2011, 1(1):47-49
    23 Pierce CD. Progress-variable approach for large-eddy simulation of turbulent combustion.[PhD Thesis]. Stanford:Stanford University, 2001
    24 Pierce CD, Moin P. Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. Journal of Fluid Mechanics, 2004, 504(504):73-97
    25 Ihme M, Pitsch H. Prediction of extinction and reignition in non-premixed turbulent flames using a flamelet/progress variable model:1. A priori study and presumed PDF closure. Combustion & Flame, 2008, 155(s 1-2):70-89
    26 Ihme M, Pitsch H. Prediction of extinction and reignition in non-premixed turbulent flames using a flamelet/progress variable model:2. Application in LES of Sandia flames D and E. Combustion & Flame, 2008, 155(s 1-2):90-107
    27 Ihme M, Schmitt C, Pitsch H. Optimal artificial neural networks and tabulation methods for chemistry representation in LES of a bluff-body swirl-stabilized flame. Proceedings of the Combustion Institute, 2009, 32(1):1527-1535
    28 Ihme M, See YC. LES flamelet modeling of a three-stream MILD combustor:analysis of flame sensitivity to scalar inflow conditions. Proceedings of the Combustion Institute, 2010, 33(6):1309-1317
    29 Ihme M, Shunn L, Zhang J. Regularization of reaction progress variable for application to flamelet-based combustion models. Journal of Computational Physics, 2012, 231:7715-7721
    30 Ihme M, Zhang J, He GW, et al. Large eddy simulation of a jetin-hot-coflow burner operating in the oxygen-diluted combustion regime. Flow Turbulence & Combustion, 2012, 89(3):449-464
    31 Bowman CT, Hanson RK, Davidson DF, et al. GRI-Mech 2.11(1997). Available from http://www.me.berkeley.edu/grimech/
计量
  • 文章访问数:  1268
  • HTML全文浏览量:  113
  • PDF下载量:  738
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-05
  • 修回日期:  2016-06-12
  • 刊出日期:  2016-11-17

目录

    /

    返回文章
    返回