EI、Scopus 收录
中文核心期刊

环形桁架结构径向振动的等效圆环模型

刘福寿, 金栋平

刘福寿, 金栋平. 环形桁架结构径向振动的等效圆环模型[J]. 力学学报, 2016, 48(5): 1184-1191. DOI: 10.6052/0459-1879-16-076
引用本文: 刘福寿, 金栋平. 环形桁架结构径向振动的等效圆环模型[J]. 力学学报, 2016, 48(5): 1184-1191. DOI: 10.6052/0459-1879-16-076
Liu Fushou, Jin Dongping. EQUIVALENT CIRCULAR RING MODEL FOR THE RADIAL VIBRATION ANALYSIS OF HOOP TRUSS STRUCTURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1184-1191. DOI: 10.6052/0459-1879-16-076
Citation: Liu Fushou, Jin Dongping. EQUIVALENT CIRCULAR RING MODEL FOR THE RADIAL VIBRATION ANALYSIS OF HOOP TRUSS STRUCTURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1184-1191. DOI: 10.6052/0459-1879-16-076
刘福寿, 金栋平. 环形桁架结构径向振动的等效圆环模型[J]. 力学学报, 2016, 48(5): 1184-1191. CSTR: 32045.14.0459-1879-16-076
引用本文: 刘福寿, 金栋平. 环形桁架结构径向振动的等效圆环模型[J]. 力学学报, 2016, 48(5): 1184-1191. CSTR: 32045.14.0459-1879-16-076
Liu Fushou, Jin Dongping. EQUIVALENT CIRCULAR RING MODEL FOR THE RADIAL VIBRATION ANALYSIS OF HOOP TRUSS STRUCTURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1184-1191. CSTR: 32045.14.0459-1879-16-076
Citation: Liu Fushou, Jin Dongping. EQUIVALENT CIRCULAR RING MODEL FOR THE RADIAL VIBRATION ANALYSIS OF HOOP TRUSS STRUCTURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1184-1191. CSTR: 32045.14.0459-1879-16-076

环形桁架结构径向振动的等效圆环模型

基金项目: 国家自然科学基金重大项目(11290153)和江苏高校优势学科建设工程资助项目.
详细信息
    通讯作者:

    金栋平,教授,主要研究方向:非线性动力学与控制.E-mail:jindp@nuaa.edu.cn

  • 中图分类号: V414.2

EQUIVALENT CIRCULAR RING MODEL FOR THE RADIAL VIBRATION ANALYSIS OF HOOP TRUSS STRUCTURES

  • 摘要: 在大型环形网架式可展天线中,环形桁架结构的动力学性能对于整个天线的工作状态至关重要.针对大型空间桁架结构,基于连续体等效的思想,将其动力学模型简化为简单的弹性连续体模型一直是动力学研究的热点.将环形桁架结构看作由重复的平面桁架单元构成的环形周期结构,在周期桁架单元等效梁模型的基础上,提出采用不计剪切变形和转动惯量的等效圆环模型分析环形桁架结构的径向振动,并对等效圆环模型的偏微分运动方程进行了解析求解.首先通过变量代换将描述圆环径向振动的四阶偏微分方程组降阶为一阶偏微分方程组,然后通过对降阶后的偏微分方程组进行Laplace变换将其转化为常微分方程组,并采用微分方程组的Green函数解法,获得了等效圆环模型在复频域下动力响应的解析表达式,进而得到等效圆环模型固有振动的特征方程及传递函数的表达式.最后通过数值算例对环形桁架有限元模型与等效圆环模型的固有频率和振型以及传递函数进行了对比分析,验证了等效圆环模型用于环形桁架结构径向振动分析的可行性.
    Abstract: In large deployable mesh antenna, the dynamic property of hoop truss is vital to the working performance of the whole antenna. For large space truss structures, the model simplification of these structures with simple elastic continuum model is always the focus of dynamics research. By regarding the hoop truss as a hoop periodic structure composed of repetitive planar truss elements, and based on the equivalent beam model of the repeated truss element, an equivalent circular ring model for the radial vibration analysis of the hoop truss structure is presented. By variable substitution, the fourth-order partial differential equations (PDEs) for the radial vibration of theffcircular ring are reduced to first-order PDEs, then the reduced PDEs are transform to ordinary differential equations via Laplace transform, Green's function method is utilized to solve the dynamic response of theffcircular ring in complex frequency domain. Furthermore the characteristic equations for natural vibration and the expression of transfer function of the equivalent ring model were derived. At last, a numerical example is used to compare the natural frequencies, mode shapes and transfer functions of the finite element model and the equivalent ring model of the hoop truss. The results verifies the feasibility of using equivalent circular ring model for radial vibration analysis of hoop truss structure.
  • 1 司洪伟, 大挠性航天桁架结构动力学建模及其主动模糊控制研究.[博士论文]. 长沙:国防科学技术大学, 2006(Si Hongwei. Research on dynamic modeling and active fuzzy control of large flexible space truss.[PhD Thesis]. Changsha:National University of Defense Technology, 2006(in Chinese))
    2 Santiago-Prowald J, Baier H. Advances in deployable structures and surfaces for large apertures in space. CEAS Space Journal, 2013, 5:89-115
    3 胡海岩, 田强, 张伟等. 大型网架式可展开空间结构的非线性动力学与控制. 力学进展, 2013, 43(4):390-414(Hu Haiyan, Tian Qiang, Zhang Wei, et al. Nonlinear dynamics and control of large deployable space structures composed of trusses and meshes. Advances in Mechanics, 2013, 43(4):390-414(in Chinese))
    4 彭海军, 王文胜, 程耿东. 基于物理降阶模型的桁架结构振动主动控制. 工程力学, 2013, 30(12):1-7(Peng Haijun, Wang Wensheng, Cheng Gengdong. Active vibration control of a trussed structure based on the physical reduced model. Engineering Mechanics, 2013, 30(12):1-7(in Chinese))
    5 Salehian A, Seigler TM, Inman DJ. Control of the continuum model of a large flexible space structure. In:Proceedings of 2006 ASME International Mechanical Engineering Congress and Exposition, Chicago, USA, 2006. 561-570
    6 王文胜. 复杂结构动力模型降阶方法研究. 力学与实践, 2015, 37(2):171-181(Wang Wensheng. Dynamic model reduction methods for complicated structures. Mechanics in Engineering, 2015, 37(2):171-181(in Chinese))
    7 Noor AK, Mikulas MM. Continuum modeling of large lattice structures:status and projections. NASA TP-2767, 1988
    8 Lee U. Dynamic continuum plate representations of large thin lattice structure. AIAA Journal, 1993, 31(9):1734-1736
    9 Bennett WH, Kwatny HG. Continuum modeling of flexible structures with application to vibration control. AIAA Journal, 1989, 7(9):1264-1273
    10 Noor AK, Anderson MS, Green WH. Continuum models for beamand platelike lattice structures. AIAA Journal, 1978, 16(12):1219-1228
    11 Noor AK, Nemeth MP. Analysis of spatial beamlike lattices with rigid joints. Computer Methods in Applied Mechanics and Engineering, 1980, 24(1):35-59
    12 Noor AK, Russell WC. Anisotropic continuum models for beamlike lattice trusses. Computer Methods in Applied Mechanics and Engineering, 1986, 57(3):257-277
    13 Sun CT, Liebbe SW. Global-local approach to solving vibration of large truss structures. AIAA Journal, 1990, 28(2):303-308
    14 Necib B, Sun CT. Analysis of truss beams using a high order Timoshenko beam finite element. Journal of Sound and Vibration, 1989, 130(1):149-159
    15 Salehian A, Inman DJ. Dynamic analysis of a lattice structure by homogenization:experimental validation. Journal of Sound and Vibration, 2008, 316(1-5):180-197
    16 Salehian A, Ibrahim M, Seigler TM. Damping in periodic structures:A continuum modeling approach. AIAA Journal, 2014, 52(3):569-590
    17 Gonella S, Ruzzene M. Homogenization of vibrating periodic lattice structures. Applied Mathematical Modelling, 2008, 32(4):459-482
    18 Balakrishnan AV. Combined structures-controls-integrated optimization using distributed parameter models. Computational Mechanics, 1991, 8(2):125-133
    19 郭宏伟, 刘荣强, 邓宗全. 索杆铰接式伸展臂动力学建模与分析. 机械工程学报, 2011, 47(9):66-71(Guo Hongwei, Liu Rongqiang, Deng Zongquan. Dynamic modeling and analysis of cable-strut deployable articulated mast. Journal of Mechanical Engineering, 2011, 47(9):66-71(in Chinese))
    20 Guo HW, Liu RQ, Deng ZQ. Dynamic analysis and nonlinear identification of space deployable structure. Journal of Central South University, 2013, 20(5):1204-1213
    21 Liu LK, Shan JJ, Zhang Y. Dynamics modeling and analysis of spacecraft with large deployable hoop-truss antenna. Journal of Spacecraft and Rockets, 2016, 53(3):471-479
    22 Luo YJ, Xu ML, Yan B, et al. PD control for vibration attenuation in hoop truss structure based on a novel piezoelectric bending actuator. Journal of Sound and Vibration, 2015, 339:11-24
    23 刘福寿, 金栋平, 陈辉. 环形桁架结构动力分析的等效力学模型. 振动工程学报, 2013, 26(4):516-521(Liu Fushou, Jin Dongping, Chen Hui. An equivalent mechanics model for the dynamic analysis of hoop truss structures. Journal of Vibration Engineering, 2013, 26(4):516-521(in Chinese))
    24 Soedel W. Vibration of Shells and Plates,3rd Edition. New York:Marcel Dekker, 2004
    25 Rao SS. Vibration of Continuous Systems. New Jersey:John Wiley & Sons, 2007
    26 Archer RR. Small vibrations of thin incompleteffcircular rings. International Journal of Mechanical Sciences, 1960, 1(1):45-56
    27 Zakrzhevskii AE, Tkachenko VF, Khoroshilov VS. Natural modes and frequencies of in-plane vibrations of a fixed elastic ring. International Applied Mechanics, 2010, 46(12):1420-1427
    28 Ellison J, Ahmadi G, Kehoe M. Passive vibration control of airborne equipment using a circular steel ring. Journal of Sound & Vibration, 2001, 246(1):1-28
    29 葛渭高, 李翠哲, 王宏洲. 常微分方程与边值问题. 北京:科学出版社, 2008(GeWeigao, Li Cuizhe,Wang Hongzhou. Ordinary Differential Equations and Boundary Value Problems. Beijinig:Science Press, 2008(in Chinese))
    30 Yang B, Tan CA. Transfer functions of one-dimensional distributed parameter systems. Journal of Applied Mechanics, 1992, 59(4):1009-1014
    31 Pastor M, Binda M, Har?arik T. Modal assurance criterion. Procedia Engineering, 2012, 48:543-548
  • 期刊类型引用(10)

    1. 胡文华,高家旺,冯晶晶,朱东方,曹东兴,吴瑞琴. 三棱直线桁架的连续体等效及承载特性研究. 工程力学. 2023(03): 238-244 . 百度学术
    2. 方奕忠,崔新图,沈韩,黄臻成,冯饶慧,廖德驹,庞晓宁. 弦、杆、环的横振动理论与实验研究. 大学物理. 2023(06): 32-39 . 百度学术
    3. 金栋平. 非线性振动系统的多项式向量方法. 力学学报. 2023(10): 2373-2380 . 本站查看
    4. 吴昆,高玉强,王立峰,金栋平,胡海岩. 多胞局域共振型超材料的减振实验研究. 南京航空航天大学学报. 2022(05): 908-914 . 百度学术
    5. 曹登庆,白坤朝,丁虎,周徐斌,潘忠文,陈立群,詹世革. 大型柔性航天器动力学与振动控制研究进展. 力学学报. 2019(01): 1-13 . 本站查看
    6. 周剑萍,王亮. 大跨度主-副桁架钢结构的地震反应探讨分析. 地震工程学报. 2019(03): 626-630 . 百度学术
    7. 姜东,徐宇,王桂伦,周李真辉,费庆国. 锁定状态下球铰连接桁架的刚度性能. 东南大学学报(自然科学版). 2019(05): 820-825 . 百度学术
    8. 吴锋,李昱葶,彭海军. 对称结构分析的一种新的群论方法. 计算机辅助工程. 2018(04): 1-6+21 . 百度学术
    9. 穆瑞楠,王艺睿,谭述君,吴志刚,齐朝晖. 空间太阳能电站姿态运动-结构振动耦合建模与分析. 宇航学报. 2018(06): 615-623 . 百度学术
    10. 杨绍武,张伟. 受边界载荷的大型环形桁架天线结构非线性动力学研究. 中国科学:物理学 力学 天文学. 2017(10): 54-64 . 百度学术

    其他类型引用(10)

计量
  • 文章访问数:  1306
  • HTML全文浏览量:  166
  • PDF下载量:  968
  • 被引次数: 20
出版历程
  • 收稿日期:  2016-03-21
  • 修回日期:  2016-05-31
  • 刊出日期:  2016-09-17

目录

    /

    返回文章
    返回