EI、Scopus 收录
中文核心期刊

内聚力模型的形状对胶接结构断裂过程的影响

张军, 贾宏

张军, 贾宏. 内聚力模型的形状对胶接结构断裂过程的影响[J]. 力学学报, 2016, 48(5): 1088-1095. DOI: 10.6052/0459-1879-16-064
引用本文: 张军, 贾宏. 内聚力模型的形状对胶接结构断裂过程的影响[J]. 力学学报, 2016, 48(5): 1088-1095. DOI: 10.6052/0459-1879-16-064
Zhang Jun, Jia Hong. INFLUENCE OF COHESIVE ZONE MODELS SHAPE ON ADHESIVELY BONDED JOINTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1088-1095. DOI: 10.6052/0459-1879-16-064
Citation: Zhang Jun, Jia Hong. INFLUENCE OF COHESIVE ZONE MODELS SHAPE ON ADHESIVELY BONDED JOINTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1088-1095. DOI: 10.6052/0459-1879-16-064
张军, 贾宏. 内聚力模型的形状对胶接结构断裂过程的影响[J]. 力学学报, 2016, 48(5): 1088-1095. CSTR: 32045.14.0459-1879-16-064
引用本文: 张军, 贾宏. 内聚力模型的形状对胶接结构断裂过程的影响[J]. 力学学报, 2016, 48(5): 1088-1095. CSTR: 32045.14.0459-1879-16-064
Zhang Jun, Jia Hong. INFLUENCE OF COHESIVE ZONE MODELS SHAPE ON ADHESIVELY BONDED JOINTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1088-1095. CSTR: 32045.14.0459-1879-16-064
Citation: Zhang Jun, Jia Hong. INFLUENCE OF COHESIVE ZONE MODELS SHAPE ON ADHESIVELY BONDED JOINTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1088-1095. CSTR: 32045.14.0459-1879-16-064

内聚力模型的形状对胶接结构断裂过程的影响

基金项目: 国家自然科学基金(10972200)和河南省国际合作基金(144300510008)资助项目.
详细信息
    通讯作者:

    张军,教授,主要研究方向:粘接结构的可靠性研究.E-mail:zhang_jun@zzu.edu.cn

  • 中图分类号: TQ436.9

INFLUENCE OF COHESIVE ZONE MODELS SHAPE ON ADHESIVELY BONDED JOINTS

  • 摘要: 内聚力模型被广泛应用于粘接结构的断裂数值模拟过程中,为深入分析不同形状内聚力模型与胶黏剂性质和粘接结构断裂之间的关系,本文分别采用脆性和延展性两种类型胶黏剂,对其粘接的对接试件进行了单轴拉伸、剪切实验,以及其粘接的双臂梁试件进行了断裂实验.3种类型的内聚力模型(抛物线型、双线型和三线型)分别模拟了以上粘接结构的断裂过程,并与实验结果进行对比.结果发现:双线型的内聚力模型适用计算脆性胶黏剂的拉伸与剪切的断裂过程;指数型内聚力模型较适合计算延展性胶黏剂的拉伸和剪切的断裂过程,临界应力、断裂能和模型的形状参数是分析拉伸和剪切的重要参数;双臂梁试件的断裂过程模拟结果发现,断裂曲线与胶黏剂性质有关,内聚力模型形状参数也有影响.通过实验与计算结果分析,双线型内聚力模型更适合脆性胶黏剂粘接的双臂梁断裂计算,而三线型更适合计算延展性胶黏剂粘接的双臂梁断裂过程,此研究结果对胶黏剂的使用和粘接结构的断裂分析有很重要意义.
    Abstract: Cohesive zone models have been increasingly used to simulate fracture of adhesively bonded joint. In order to understand the relation between the delamination of the different types of adhesives and the shape of cohesive zone models (CZMs), the uniaxial tension and shear experiments were conducted using two distinct adhesives, an epoxy-based adhesive in a brittle manner and VHBTM tape adhesive in a ductile manner. Three types of CZMs shapes are adopted, including exponential, bilinear, and trapezoidal models. The results demonstrate that the bilinear CZM more suitably simulate the tension and shear failure of the brittle adhesive, while the exponential CZM suitably describes the ductile adhesive. The cohesive strength, work of separation and the shape parameters are the significant effect factors on the simulation results of the uniaxial tension and shear debonding procedures. Nevertheless, the shape of CZM has certain influences on the simulation of the double cantilever beam fracture. The comparison between the numerical and the experiment results demonstrate that the bilinear CZM more suitably simulate the double cantilever beam fracture of the brittle adhesive, while the trapezoidal CZM suitably describes the ductile adhesive. The investigation results are significant to use CZMs to precisely analyze adhesively bonded joints fracture.
  • 1 He X. A review of finite element analysis of adhesively bonded joints. International Journal of Adhesion & Adhesives, 2011, 31:248-264
    2 郑锐,林建平,吴倩倩等.结构胶胶接汽车车身金属接头抗环境腐蚀性能研究进展.材料工程,2015, 34(3):98-105(Zheng Rui, Lin Jianping, Wu Qianqian, et al. Progress in research on environmental corrosion-resistance of structural adhesive bonding automotive-body metal joint. Journal of Materials Engineering, 2015, 43(3):98-105(in Chinese))
    3 叶斐,杨世文.碳纤维复合材料胶接单搭接接头的力学研究. 汽车实用技术,2015,2:68-70(Ye Fei, Yang Shiwen. The mechanics study of carbon fiber composite single lap adhesive joints. Automobile Applied Technology, 2015,2:68-70(in Chinese))
    4 Barenblatt GI. The formation of equilibrium cracks during brittle fracture:general ideas and hypotheses, axially symmetric crack. Applied Mathematics and Mechanics, 1959, 23:622-636
    5 Dugdale DS. Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids, 1960, 8:100-104
    6 刘湘云,陈普会,马维等.复合材料-金属毛化接头的失效预测模型.固体力学学报, 2015,36(1):55-62(Liu Xiangyun, Chen Puhui, Ma Wei, et al. A model for a composite-metal-weld joint. Journal of Solid Mechanics, 2015, 36(1):55-62(in Chinese))
    7 Feraren P, Jensen HM. Cohesive zone modelling of interface fracture near flaws in adhesive joints. Engineering Fracture Mechanics, 2004, 71:2125-2142
    8 Park K, Paulino GH, Roesler JR. Determination of the kink point in the bilinear softening model for concrete. Engineering Fracture Mechanics, 2008, 75:3806-3818
    9 张军,张永祥,杨军.环氧树脂胶湿热与室温环境下的蠕变行为研究.机械强度,2014,36(6):35-41(Zhang Jun, Zhang Yongxiang, Yang Jun. Investigation on Epoxy Creep Behavior at Ambient and Hydrothermal Environment. Journal of Mechanical Strength, 2015, 37(6):237-242(in Chinese))
    10 张军,王增威,杨军等.环氧树脂胶对接结构的疲劳试验与理论研究.中国胶粘剂,2014, 23(9):17-21(Zhang Jun,Wang Zengwei, Yang Jun, et al. Fatigue experiment and theoretical investigation on epoxy resin adhesive butt joint. China Adhesives, 2014, 23(9):17-21(in Chinese))
    11 Needleman A. A continuum model for void nucleation by inclusion debonding. Journal of Applied Mechanics, 1987, 54:525-531
    12 Tvergaard V, Hutchinson JW. The relation between crack growth resistance and fracture process parameters in elastic-plastic solids. Journal of Mechanics and Physics of Solids, 1992, 40:1377-1397
    13 Camacho GT, Ortiz M. Computational modeling of impact damage in brittle materials. International Journal of Solids and Structures, 1996, 33:2899-2938
    14 Geubelle PH, Baylor J. Impact-induced delamination of laminated composites:a 2D simulation. Composites Part B:Engineering, 1998, 29:589-602
    15 Alfano M, Furgiuele F, Leonardi A, et al. Mode I fracture of adhesive joints using tailored cohesive zone models. International Journal of Fracture, 2009, 157:193-204
    16 Martiny PH, Lani F, Kinloch AJ, et al. A maximum stress at a distance criterion for the prediction of crack propagation in adhesivelybonded joints. Engineering Fracture Mechanics, 2013, 97:105-135
    17 Jhin G, Azari S, Ameli A, et al. Crack growth rate and crack path in adhesively bonded joints:Comparison of creep fatigue and fracture. International Journal of Adhesion and Adhesives, 2013, 46:74-84
    18 张军.界面应力及内聚力模型在界面力学的应用.郑州:郑州大学出版社,2011(Zhang Jun. Application of Interface Stress and Cohesive Zone Model in Interface Mechanics. Zhengzhou:Zhengzhou University Press, 2011(in Chinese))
    19 Liljedhal CDM, Crocombe AD, Wahab MA. Damage modeling of adhesively bonded joints. International Journal of Fracture, 2006, 141:147-161
    20 Chen CC, Linzell DG. Modeling end notched flexure tests to establish cohesive element mode Ⅱ fracture parameters. Engineering Fracture Mechanics, 2010, 77:1338-1347
    21 李伟东,吴坤岳,胡平.周期激励下单搭接接头强度与振动特性研究.计算力学学报,2014,31(4):446-452(LiWeidong,Wu Kunyue, Hu Ping. Study on strength and fatigue behavior of single lap joint under periodic excitation. Chinese Journal of Computational Mechanics, 2014, 31(4):446-452(in Chinese))
    22 张盼,许英杰,汪海滨等.基于粘弹性本构模型的双搭接胶结接头应力分析.应用数学和力学,2015,2(36):160-166(Zhang Pan, Xu Yingjie, Wang Haibin, et al. Stress analyses of double lap bonding joint using viscoelastic constitutive model. Applied Mathematics and Mechanics, 2015, 36(2):160-166(in Chinese))
    23 XuW,Wei Y. Strength analysis of metallic bonded joints containing Defects. Computational Materials Science, 2012, 53:444-450
    24 Blackman BRK, Hadavinia H, Kinloch AJ, et al. The use of a cohesive zone model to study the fracture of fibre composites and adhesively-bonded joints. International Journal of Fracture, 2003, 119:25-46
    25 Yan Y, Shang F. Cohesive zone modeling of interfacial delamination in PZT thin films. International Journal of Solids and Structures, 2009, 46:2739-2749
    26 Lorena M, Fern C, Sonia S. Influence of the cohesive law shape on the composite adhesively-bonded patch repair behavior. Composites Part B, 2016, 91:414-421
    27 Cui H. Simulation of ductile adhesive failure with experimentally determined cohesive law. Composites Part B, 2016, Accepted Manuscript
    28 Jousset P, Rachik M. Comparison and evaluation of two types of cohesive zone models for the finite element analysis of fracture propagation in industrial bonded structures. Engineering Fracture Mechanics, 2014, 132:48-69
    29 Campilho RDSG, Banea MD, Neto JABP, et al. Modelling adhesive joints with cohesive zone models:effect of the cohesive law shape of the adhesive layer. International Journal of Adhesion & Adhesives, 2013, 44:48-56
    30 Campilho RDSG, Fernandes TAB. Comparative evaluation of single-lap joints bonded with different adhesives by cohesive zone modellin. Procedia Engineering, 2015, 114:102-109
    31 Arcan L, Arcan M, Daniel L. SEM fractography of pure and mixed mode Interlaminar fracture in graphite/epoxy composites. In:Masters JE and Au JJ eds. Fractography of Modern Engineering Materials:Composites and Metals, ASTM Technology Publish, Philadelphia, 1987
    32 Arnaud N, Créacohcadec R, Cognard JY. A tension/compressiontorsion test suited to analyze the mechanical behavior of adhesives under non-proportional loadings. International Journal of Adhesion & Adhesives, 2014, 53:3-14
  • 期刊类型引用(20)

    1. 何易周,张凝,尹硕辉. 考虑多种失效模式耦合的复合材料损伤分析. 机械科学与技术. 2024(01): 166-172 . 百度学术
    2. 杨敏,许永伦,王淑婷,庞云嵩,任琳琳,曾小亮,孙蓉. 基于复合弹性体界面粘接强度计算的有限元数值模型构建. 中国胶粘剂. 2024(05): 33-39 . 百度学术
    3. 杜垚,曾凯,邢保英,张洪申,秦怡歆,陈江波. 基于三维RVE模型的颗粒增强粘接接头断裂失效分析. 塑性工程学报. 2023(05): 195-201 . 百度学术
    4. 魏代锋,安晨,张哲,徐泽金,高强,李有安. 漂浮软管接头破损及粘结面脱粘研究. 中国海上油气. 2023(04): 173-180 . 百度学术
    5. 刘建国,潘婕. 用于盾构管片接缝的环氧树脂力学性能研究. 华东交通大学学报. 2022(01): 50-58 . 百度学术
    6. 周亮,李晓雷,陈文义. 黏接界面各本构模型之间形状参数的关系研究. 河北工业大学学报. 2022(01): 35-41 . 百度学术
    7. 张腾,喻健,乔石,何宇廷,陈桂勇. 金属蒙皮破孔结构胶铆混合修理的疲劳性能研究. 航空工程进展. 2022(03): 32-39 . 百度学术
    8. 那景新,王广彬,庄蔚敏,慕文龙,徐千卉. 复合材料粘接结构强度与环境耐久性综述. 交通运输工程学报. 2021(06): 78-93 . 百度学术
    9. 李伟平,曾凯,邢保英,冯煜阳. 胶接点焊接头断裂失效过程的仿真分析. 兵器材料科学与工程. 2020(02): 113-117 . 百度学术
    10. 熊学玉,肖启晟. 基于内聚力模型的混凝土细观拉压统一数值模拟方法. 水利学报. 2019(04): 448-462 . 百度学术
    11. Jun Zhang,Jiaqi Wang,Zhenwei Yuan. Experimental and Numerical Investigation on the Mechanical Behaviors of the Velcro~? and Dual-Lock Fasteners. Journal of Harbin Institute of Technology(New Series). 2019(02): 61-70 . 必应学术
    12. 李慧,张军,李海宇,申浩中. 对接粘接结构的扭转疲劳损伤行为研究. 天津大学学报(自然科学与工程技术版). 2019(08): 836-842 . 百度学术
    13. 朱兆一,李晓文,李妍,熊云峰,扈喆. 基于内聚力模型的CFRP层合板胶接结构力学行为研究. 玻璃钢/复合材料. 2019(08): 5-10 . 百度学术
    14. 董柏岩,马其华. CFRP/DC04钢胶接接头弯曲特性数值分析. 玻璃钢/复合材料. 2019(11): 37-44 . 百度学术
    15. 刘应雷,高波,姚东. 基于GRNN的三元乙丙橡胶薄膜粘接界面力学性能参数反演. 固体火箭技术. 2019(06): 699-705 . 百度学术
    16. 韩啸,金勇,杨鹏,李小阳,侯文彬. 胶层厚度对胶粘剂Ⅰ型断裂韧性影响试验和仿真研究. 机械工程学报. 2018(10): 43-52 . 百度学术
    17. 李潘,郝志明,甄文强. 一种近场动力学非普通状态理论零能模式控制方法. 力学学报. 2018(02): 329-338 . 本站查看
    18. 盛艳丽,崔辉如. 考虑时间效应的发动机粘接界面力学模型研究. 强度与环境. 2018(05): 39-44 . 百度学术
    19. 朱瑶,周金柱,黄进,王艳,楚雪梅,段竹竹. 含粘接缺陷的共形承载天线力学性能演化机理. 电子机械工程. 2017(05): 1-6+11 . 百度学术
    20. 李景传,梁立红,刘小明,马寒松,宋晶如,魏悦广. 金属/环氧/金属粘结体系的强韧和失效机制实验研究. 力学学报. 2017(06): 1213-1222 . 本站查看

    其他类型引用(31)

计量
  • 文章访问数:  1540
  • HTML全文浏览量:  203
  • PDF下载量:  866
  • 被引次数: 51
出版历程
  • 收稿日期:  2016-03-01
  • 修回日期:  2016-04-17
  • 刊出日期:  2016-09-17

目录

    /

    返回文章
    返回