1 Jameson A. Aerodynamic design via control theory. Journal of Scientific Computing, 1988, 3(3):233-260
|
2 Reuther JJ, Jameson A, Alonso JJ, et al. Constrained multipoint aerodynamic shape optimization using an adjoint formulation and parallel computers, part 1. Journal of Aircraft, 1999, 36(1):51-60
|
3 Martins J, Alonso JJ, Reuther JJ. A coupled-adjoint sensitivity analysis method for high-fidelity aero-structural design. Optimization and Engineering, 2005, 6(1):33-62
|
4 罗阳军, 亢战, 邓子辰. 多工况下结构鲁棒性拓扑优化设计. 力学学报, 2011, 43(1):227-234(Luo Yangjun, Kang Zhan, Deng Zichen. Robust topology optimization design of structures with multiple load cases. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1):227-234(in Chinese))
|
5 顾元宪, 赵红兵, 陈飚松等. 热-应力耦合结构灵敏度分析方法. 力学学报, 2001, 33(5):685-691(Gu Yuanxian, Zhao Hongbing, Chen Biaosong, et al. Sensitivity analysis and design optimization of thermal-stress coupled structures. Chinese Journal of Theoretical and Applied Mechanics, 2001, 33(5):685-691(in Chinese))
|
6 郭旭, 顾元宪, 赵康. 广义变分原理的结构形状优化伴随法灵敏度分析. 力学学报, 2004, 36(3):288-295(Guo Xu, Gu Yuanxian, Zhao Kang. Adjoint shape sensitivity analysis based on generalized variational principle. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(3):288-295(in Chinese))
|
7 Giles MB, Süli E. Adjoint methods for PDEs:a posteriori error analysis and postprocessing by duality. Acta Numerica, 2002, 11:145-236
|
8 Fidkowski KJ, Darmofal DL. Review of output-based error estimation and mesh adaptation in computational fluid dynamics. AIAA journal, 2011, 49(4):673-694
|
9 杨杰, 张崎, 黄一. 结构可靠性灵敏度因子的一种新指标. 工程力学, 2013, 30(6):16-29(Yang Jie, Zhang Qi, Huang Yi. A new sensitivity factor for structural reliability. Engineering Mechanics, 2013, 30(6):16-29(in Chinese))
|
10 Wang Q. Uncertainty quantification for unsteady fluid flow using adjoint-based approaches.[PhD Thesis]. Stanford:Stanford University, 2009
|
11 Lea DJ, Allen MR, Haine TWN. Sensitivity analysis of the climate of a chaotic system. Tellus, 2000, 52A:523-532
|
12 Eyink GL, Haine TWN, Lea DJ. Ruelle's linear response formula, ensemble adjoint schemes and Lévy flights. Nonlinearity, 2004, 17(5):1867-1889
|
13 Thuburn J. Climate sensitivities via a Fokker-Planck adjoint approach. Quarterly Journal of the Royal Meteorological Society, 2005, 131(605):73-92
|
14 Bloningan PJ, Wang Q. Probability density adjoint for sensitivity analysis of the mean of chaos. Journal of Computational Physics, 2014, 270:660-686
|
15 Abramov RV, Majda AJ. Blended response algorithms for linear fluctuation-dissipation for complex nonlinear dynamical systems. Nonlinearity, 2007, 20(12):2793-2821
|
16 Cooper FC, Haynes PH. Climate sensitivity via a nonparametric fluctuation-dissipation theorem. Journal of the Atmospheric Sciences, 2011, 68(5):937-953
|
17 Katok A, Hasselblatt B. Introduction to the Modern Theory of Dynamical Systems. New York:Cambridge university press, 1997
|
18 杨润生. 伪轨跟踪与混沌. 数学学报, 1996, 39(3):382-386(Yang Runsheng. Pseudo-orbit-tracing and chaos. Acta Mathematica Sinica, 1996, 39(3):382-386(in Chinese))
|
19 朱玉峻, 何连法. 线性系统的极限跟踪性. 数学物理学报, 2007, 27A(2):314-321(Zhu Yujun, He Lianfa. Limit shadowing property of linear systems. Acta Mathematica Scientia, 2007, 27A(2):314-321(in Chinese))
|
20 Pilyugin SY. Theory of pseudo-orbit shadowing in dynamical systems. Differential Equations, 2011, 47(13):1929-1938
|
21 Soldatenko S, Yusupov R. Shadowing property of coupled nonlinear dynamical system. Applied Mathematical Sciences, 2015, 9:2459-2466
|
22 Soldatenko S, Steinle P, Tingwell C, et al. Some aspects of sensitivity analysis in variational data assimilation for coupled dynamical systems. Advances in Meteorology, 2015, 2015:ID 753031
|
23 Wang Q. Convergence of the least squares shadowing method for computing derivative of ergodic averages. SIAM Journal on Numerical Analysis, 2014, 52(1):156-170
|
24 Wang Q, Hu R, Blonigan P. Least squares shadowing sensitivity analysis of chaotic limit cycle oscillations. Journal of Computational Physics, 2014, 267:210-224
|
25 Blonigan PJ, Gomez SA,Wang Q. Least squares shadowing for sensitivity analysis of turbulent fluid flows. 52nd Aerospace Sciences Meeting, National Harbor, Maryland, 2014-01-13-17
|
26 Blonigan PJ, Wang Q. Least squares shadowing sensitivity analysis of a modified Kuramoto-Sivashinsky equation. Chaos, Solitons & Fractals, 2014, 64:16-25
|
27 Pilyugin SY. Shadowing in dynamical systems. Lecture Notes in Mathematics, Berlin:Springer, 1999
|
28 Palmer KJ. Shadowing in Dynamical Systems, Theory and Applications. Dordrecht:Kluwer Academic, 2000
|
29 高强, 彭海军, 张洪武等. 基于哈密顿动力系统新变分原理的保辛算法之一:变分原理和算法构造. 计算力学学报, 2013, 30(4):461-467(Gao Qiang, Peng Haijun, Zhang Hongwu, et al. The symplectic algorithms for Hamiltonian dynamic systems based on affinew variational principle part I:the variational principle and the algorithms. Chinese Journal of Computational Mechanics, 2013, 30(4):461-467(in Chinese))
|
30 Peng HJ, Gao Q, Wu ZG, et al. Effcient sparse approach for solving receding-horizon control problems. AIAA Journal of Guidance, Control, and Dynamics, 2013, 36(6):1864-1872
|