EI、Scopus 收录
中文核心期刊

非线性最小二乘跟踪的对偶变量变分方法

寻广彬, 彭海军, 邬树楠, 吴志刚

寻广彬, 彭海军, 邬树楠, 吴志刚. 非线性最小二乘跟踪的对偶变量变分方法[J]. 力学学报, 2016, 48(5): 1202-1207. DOI: 10.6052/0459-1879-15-399
引用本文: 寻广彬, 彭海军, 邬树楠, 吴志刚. 非线性最小二乘跟踪的对偶变量变分方法[J]. 力学学报, 2016, 48(5): 1202-1207. DOI: 10.6052/0459-1879-15-399
Xun Guangbin, Peng Haijun, Wu Shunan, Wu Zhigang. DUAL VARIABLE VARIATIONAL METHOD FOR NONLINEAR LEAST SQUARES SHADOWING PROBLEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1202-1207. DOI: 10.6052/0459-1879-15-399
Citation: Xun Guangbin, Peng Haijun, Wu Shunan, Wu Zhigang. DUAL VARIABLE VARIATIONAL METHOD FOR NONLINEAR LEAST SQUARES SHADOWING PROBLEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1202-1207. DOI: 10.6052/0459-1879-15-399
寻广彬, 彭海军, 邬树楠, 吴志刚. 非线性最小二乘跟踪的对偶变量变分方法[J]. 力学学报, 2016, 48(5): 1202-1207. CSTR: 32045.14.0459-1879-15-399
引用本文: 寻广彬, 彭海军, 邬树楠, 吴志刚. 非线性最小二乘跟踪的对偶变量变分方法[J]. 力学学报, 2016, 48(5): 1202-1207. CSTR: 32045.14.0459-1879-15-399
Xun Guangbin, Peng Haijun, Wu Shunan, Wu Zhigang. DUAL VARIABLE VARIATIONAL METHOD FOR NONLINEAR LEAST SQUARES SHADOWING PROBLEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1202-1207. CSTR: 32045.14.0459-1879-15-399
Citation: Xun Guangbin, Peng Haijun, Wu Shunan, Wu Zhigang. DUAL VARIABLE VARIATIONAL METHOD FOR NONLINEAR LEAST SQUARES SHADOWING PROBLEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1202-1207. CSTR: 32045.14.0459-1879-15-399

非线性最小二乘跟踪的对偶变量变分方法

基金项目: 国家自然科学基金(11432010)和中央高校基本科研业务费(DUT15LK31)资助项目.
详细信息
    通讯作者:

    吴志刚,教授,主要研究方向:飞行器动力学与控制

  • 中图分类号: O313;O241.2

DUAL VARIABLE VARIATIONAL METHOD FOR NONLINEAR LEAST SQUARES SHADOWING PROBLEM

  • 摘要: 最小二乘跟踪方法是近几年提出的一种计算动力系统跟踪轨迹的方法.基于最小二乘跟踪的灵敏度分析算法可以有效避免传统的非线性系统灵敏度分析方法中的病态初值问题,因此其在混沌系统灵敏度分析方面有着重要的应用.针对非线性的最小二乘跟踪问题,首先将其重新描述为带有约束的非线性最优控制问题,引入协态变量并将系统的哈密顿函数表示为关于状态变量和协态变量的函数.然后将目标函数的积分时间离散化,根据对偶变量变分原理,以离散区间两端的状态变量作为独立变量,用Lagrange插值多项式近似离散区间内的状态变量和协态变量,进而将非线性最优控制问题转化为求解非线性方程组问题.这种算法无需对原问题做线性化处理,避免了复杂的线性化过程以及可能因此造成的误差,同时为求解非线性最小二乘跟踪问题提供了新的思路.根据最小二乘方法可以得到两条设计参数有微小变化的状态轨迹,基于这两条状态轨迹可进一步计算出系统关于设计参数的灵敏度,范德波振子作为数值算例验证了该方法在求解最小二乘跟踪问题以及计算非线性系统灵敏度时的有效性.
    Abstract: The least squares shadowing (LSS) method, to compute the shadowing trajectories of dynamical systems, has been presented in recent years. The ill-posed initial value problem within the conventional sensitivity analysis algorithm for nonlinear systems can be effectively avoided based on the LSS method, which therefore has significant applications in the sensitivity analysis of chaotic systems. To achieve nonlinear LSS problem, it will be firstly represented as a nonlinear optimal control problem subject to constraints. By introducing the costate variables, the Hamiltonian function is represented depending on state and costate variables. The integral time of objective function is then discretized, and the state variables at ends of time interval are taken as independent variables. Then approximate the state and costate variables in the time interval using the Lagrange polynomials. This problem is finally transformed into solving nonlinear equations via dual variable variation principle. The linearizing process is avoided for the proposed algorithm, and then the errors, caused by the complex linearizing process, are also reduced, which provides affinew solution for solving the shadowing problem. Two state trajectories with designing parameters slightly changed can be obtained by LSS problem, and then the sensitivity of the nonlinear system is calculated from the two trajectories. Van der Pol oscillator as a numerical example shows that this method is effective for the LSS problem and sensitivity analysis of nonlinear systems.
  • 1 Jameson A. Aerodynamic design via control theory. Journal of Scientific Computing, 1988, 3(3):233-260
    2 Reuther JJ, Jameson A, Alonso JJ, et al. Constrained multipoint aerodynamic shape optimization using an adjoint formulation and parallel computers, part 1. Journal of Aircraft, 1999, 36(1):51-60
    3 Martins J, Alonso JJ, Reuther JJ. A coupled-adjoint sensitivity analysis method for high-fidelity aero-structural design. Optimization and Engineering, 2005, 6(1):33-62
    4 罗阳军, 亢战, 邓子辰. 多工况下结构鲁棒性拓扑优化设计. 力学学报, 2011, 43(1):227-234(Luo Yangjun, Kang Zhan, Deng Zichen. Robust topology optimization design of structures with multiple load cases. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1):227-234(in Chinese))
    5 顾元宪, 赵红兵, 陈飚松等. 热-应力耦合结构灵敏度分析方法. 力学学报, 2001, 33(5):685-691(Gu Yuanxian, Zhao Hongbing, Chen Biaosong, et al. Sensitivity analysis and design optimization of thermal-stress coupled structures. Chinese Journal of Theoretical and Applied Mechanics, 2001, 33(5):685-691(in Chinese))
    6 郭旭, 顾元宪, 赵康. 广义变分原理的结构形状优化伴随法灵敏度分析. 力学学报, 2004, 36(3):288-295(Guo Xu, Gu Yuanxian, Zhao Kang. Adjoint shape sensitivity analysis based on generalized variational principle. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(3):288-295(in Chinese))
    7 Giles MB, Süli E. Adjoint methods for PDEs:a posteriori error analysis and postprocessing by duality. Acta Numerica, 2002, 11:145-236
    8 Fidkowski KJ, Darmofal DL. Review of output-based error estimation and mesh adaptation in computational fluid dynamics. AIAA journal, 2011, 49(4):673-694
    9 杨杰, 张崎, 黄一. 结构可靠性灵敏度因子的一种新指标. 工程力学, 2013, 30(6):16-29(Yang Jie, Zhang Qi, Huang Yi. A new sensitivity factor for structural reliability. Engineering Mechanics, 2013, 30(6):16-29(in Chinese))
    10 Wang Q. Uncertainty quantification for unsteady fluid flow using adjoint-based approaches.[PhD Thesis]. Stanford:Stanford University, 2009
    11 Lea DJ, Allen MR, Haine TWN. Sensitivity analysis of the climate of a chaotic system. Tellus, 2000, 52A:523-532
    12 Eyink GL, Haine TWN, Lea DJ. Ruelle's linear response formula, ensemble adjoint schemes and Lévy flights. Nonlinearity, 2004, 17(5):1867-1889
    13 Thuburn J. Climate sensitivities via a Fokker-Planck adjoint approach. Quarterly Journal of the Royal Meteorological Society, 2005, 131(605):73-92
    14 Bloningan PJ, Wang Q. Probability density adjoint for sensitivity analysis of the mean of chaos. Journal of Computational Physics, 2014, 270:660-686
    15 Abramov RV, Majda AJ. Blended response algorithms for linear fluctuation-dissipation for complex nonlinear dynamical systems. Nonlinearity, 2007, 20(12):2793-2821
    16 Cooper FC, Haynes PH. Climate sensitivity via a nonparametric fluctuation-dissipation theorem. Journal of the Atmospheric Sciences, 2011, 68(5):937-953
    17 Katok A, Hasselblatt B. Introduction to the Modern Theory of Dynamical Systems. New York:Cambridge university press, 1997
    18 杨润生. 伪轨跟踪与混沌. 数学学报, 1996, 39(3):382-386(Yang Runsheng. Pseudo-orbit-tracing and chaos. Acta Mathematica Sinica, 1996, 39(3):382-386(in Chinese))
    19 朱玉峻, 何连法. 线性系统的极限跟踪性. 数学物理学报, 2007, 27A(2):314-321(Zhu Yujun, He Lianfa. Limit shadowing property of linear systems. Acta Mathematica Scientia, 2007, 27A(2):314-321(in Chinese))
    20 Pilyugin SY. Theory of pseudo-orbit shadowing in dynamical systems. Differential Equations, 2011, 47(13):1929-1938
    21 Soldatenko S, Yusupov R. Shadowing property of coupled nonlinear dynamical system. Applied Mathematical Sciences, 2015, 9:2459-2466
    22 Soldatenko S, Steinle P, Tingwell C, et al. Some aspects of sensitivity analysis in variational data assimilation for coupled dynamical systems. Advances in Meteorology, 2015, 2015:ID 753031
    23 Wang Q. Convergence of the least squares shadowing method for computing derivative of ergodic averages. SIAM Journal on Numerical Analysis, 2014, 52(1):156-170
    24 Wang Q, Hu R, Blonigan P. Least squares shadowing sensitivity analysis of chaotic limit cycle oscillations. Journal of Computational Physics, 2014, 267:210-224
    25 Blonigan PJ, Gomez SA,Wang Q. Least squares shadowing for sensitivity analysis of turbulent fluid flows. 52nd Aerospace Sciences Meeting, National Harbor, Maryland, 2014-01-13-17
    26 Blonigan PJ, Wang Q. Least squares shadowing sensitivity analysis of a modified Kuramoto-Sivashinsky equation. Chaos, Solitons & Fractals, 2014, 64:16-25
    27 Pilyugin SY. Shadowing in dynamical systems. Lecture Notes in Mathematics, Berlin:Springer, 1999
    28 Palmer KJ. Shadowing in Dynamical Systems, Theory and Applications. Dordrecht:Kluwer Academic, 2000
    29 高强, 彭海军, 张洪武等. 基于哈密顿动力系统新变分原理的保辛算法之一:变分原理和算法构造. 计算力学学报, 2013, 30(4):461-467(Gao Qiang, Peng Haijun, Zhang Hongwu, et al. The symplectic algorithms for Hamiltonian dynamic systems based on affinew variational principle part I:the variational principle and the algorithms. Chinese Journal of Computational Mechanics, 2013, 30(4):461-467(in Chinese))
    30 Peng HJ, Gao Q, Wu ZG, et al. Effcient sparse approach for solving receding-horizon control problems. AIAA Journal of Guidance, Control, and Dynamics, 2013, 36(6):1864-1872
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-01
  • 修回日期:  2016-07-25
  • 刊出日期:  2016-09-17

目录

    /

    返回文章
    返回