EI、Scopus 收录
中文核心期刊

热过屈曲功能梯度壁板的气动弹性颤振

夏巍, 冯浩成

夏巍, 冯浩成. 热过屈曲功能梯度壁板的气动弹性颤振[J]. 力学学报, 2016, 48(3): 609-614. DOI: 10.6052/0459-1879-15-361
引用本文: 夏巍, 冯浩成. 热过屈曲功能梯度壁板的气动弹性颤振[J]. 力学学报, 2016, 48(3): 609-614. DOI: 10.6052/0459-1879-15-361
Xia Wei, Feng Haocheng. AEROELASTIC FLUTTER OF POST-BUCKLED FUNCTIONALLY GRADED PANELS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 609-614. DOI: 10.6052/0459-1879-15-361
Citation: Xia Wei, Feng Haocheng. AEROELASTIC FLUTTER OF POST-BUCKLED FUNCTIONALLY GRADED PANELS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 609-614. DOI: 10.6052/0459-1879-15-361
夏巍, 冯浩成. 热过屈曲功能梯度壁板的气动弹性颤振[J]. 力学学报, 2016, 48(3): 609-614. CSTR: 32045.14.0459-1879-15-361
引用本文: 夏巍, 冯浩成. 热过屈曲功能梯度壁板的气动弹性颤振[J]. 力学学报, 2016, 48(3): 609-614. CSTR: 32045.14.0459-1879-15-361
Xia Wei, Feng Haocheng. AEROELASTIC FLUTTER OF POST-BUCKLED FUNCTIONALLY GRADED PANELS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 609-614. CSTR: 32045.14.0459-1879-15-361
Citation: Xia Wei, Feng Haocheng. AEROELASTIC FLUTTER OF POST-BUCKLED FUNCTIONALLY GRADED PANELS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 609-614. CSTR: 32045.14.0459-1879-15-361

热过屈曲功能梯度壁板的气动弹性颤振

基金项目: 国家自然科学基金(11302162),高等学校博士学科点专项科研基金(20110201120023)和陕西省自然科学基础研究计划(2013JQ1005)资助项目.
详细信息
    通讯作者:

    夏巍,讲师,主要研究方向:结构动力学和气动弹性力学.E-mail:xwei@mail.xjtu.edu.cn

  • 中图分类号: O343.7;V214.4

AEROELASTIC FLUTTER OF POST-BUCKLED FUNCTIONALLY GRADED PANELS

  • 摘要: 功能梯度材料的宏观物理性能随空间位置连续变化,能充分减少不同组份材料结合部位界面性能的不匹配因素.功能梯度壁板用作高速飞行器的热防护结构,能有效消除气动加热带来的壁板内部热应力集中.本文考虑热过屈曲变形引入的结构几何非线性,分析功能梯度壁板的气动弹性颤振边界.基于幂函数材料分布假设,采用混合定律计算功能梯度材料的等效力学性能.根据一阶剪切变形板理论、冯·卡门应变-位移关系和一阶活塞理论,基于虚功原理建立超声速气流中受热功能梯度壁板的非线性气动弹性有限元方程.采用牛顿-拉弗森迭代法数值求解壁板的热屈曲变形,分析超声速气流对热屈曲变形的影响机理.在壁板热过屈曲的静力平衡位置分析动态稳定性,确定了壁板的颤振边界.研究表明,当陶瓷-金属功能梯度壁板的组份材料沿厚度方向梯度分布时,会破坏结构的对称性导致壁板在面内热应力作用下发生指向金属侧的热屈曲变形.超声速气流中壁板热屈曲变形最大的位置随气流速压增大向下游推移,并伴随屈曲变形量的减小.热过屈曲壁板的几何非线性效应会提高壁板的颤振边界,这种影响在高温、低无量纲速压且壁板发生大挠度热屈曲变形时表现显著.较高无量纲气流速压下由于壁板的热屈曲变形被气动力限定在小挠度范围,几何非线性效应不明显.
    Abstract: Functionally graded materials (FGMs) with continuously varied composition e ectively reduce the mismatch at bonding surface between di erent constituents. As thermal protection structures, functionally graded panels (FGPs) eliminate the internal thermal stress concentration which arises from aerodynamic heating. The aeroelastic flutter boundary of an FGP is analyzed considering the structural geometric nonlinearity due to thermal post-buckling deflection. The e ective FGM properties are calculated using the rule of mixture homogenization with the power law distribution assumption. The first-order shear deformable plate theory, von Karman strain-displacement relations and the first-order piston theory are adopted to formulate the nonlinear aeroelastic finite element equations of FGPs in supersonic flow according to the principle of virtual work. The numerical simulation results of thermal post-buckling response are obtained using the Newton-Raphson iterative method, and the mechanism of post-buckling deflection a ected by the airflow is discussed. The panel flutter boundary is determined by analyzing the stability of post-buckling equilibriums. It is concluded that the symmetry of a ceramic-metal FGP is destroyed by through-the-thickness material distribution, and the panel tends to buckle to the metal side under in-plane thermal stresses. The position of maximum post-buckling deflection moves to the down-stream in the supersonic airflow, and the post-buckling deflection decreases with the increase of flow dynamic pressure. The geometric nonlinearity increases the flutter critical dynamic pressure of post-buckled FGPs when the large post-buckling deflection is occurred at relative high temperature and low non-dimensional dynamic pressure flow. However, the geometric nonlinearity is not so important at high non-dimensional dynamic pressure flow because the post-buckling deflection is restrained to a small one by the supersonic airflow.
  • 1 Jenkins DR. Hypersonics before the shuttle: A concise history of the X-15 research airplane. Washington: NASA Publication SP-4518,2000: 11-12
    2 Cooper PA, Holloway PF. The shuttle tile story. Astronautics and Aeronautics, 1981, 19(1): 24-36
    3 Birman V, Byrd LW. Modeling and analysis of functionally graded materials and structures. Applied Mechanics Reviews, 2007, 60:195-216
    4 Reddy JN. Analysis of functionally graded plates. International Journal for Numerical Methods in Engineering, 2000, 47(1-3): 663-684  3.0.CO;2-Q">
    5韩杰才,徐丽,王保林等. 梯度功能材料的研究进展及展望. 固体火箭技术,2004,27(3):207-215 (Han Jiecai, Xu Li,Wang Baolin, et al. Progress and prospects of functional gradient materials. Journal of Solid Rocket Technology, 2004, 27(3):207-215 (in Chinese))
    6 仲政, 吴林志, 陈伟球. 功能梯度材料与结构的若干力学问题研究进展. 力学进展, 2010, 40(5): 528-541 (Zhong Zheng, Wu Linzhi, ChenWeiqiu. Progress in the study on mechanics problems of functionally graded materials and structures. Advances in Mechanics,2010, 40(5): 528-541 (in Chinese))
    7 Wu L. Thermal buckling of a simply supported moderately thick rectangular FGM plate. Composite Structures, 2004, 64(2): 211-218
    8 Shen HS, Wang H. Nonlinear bending and postbuckling of FGM cylindrical panels subjected to combined loadings and resting on elastic foundations in thermal environments. Composites Part BEngineering,2015, 78: 202-213
    9 Park JS, Kim JH. Thermal postbuckling and vibration analyses of functionally graded plates. Journal of Sound and Vibration, 2006,289: 77-93
    10 Jha DK, Kant T, Singh RK. A critical review of recent research on functionally graded plates. Composite Structures, 2013, 96: 833-849
    11 Thai HT, Kim SE. A review of theories for the modeling and analysis of functionally graded plates and shells. Composite Structures,2015, 128: 70-86
    12 王铁军, 马连生, 石朝锋. 功能梯度中厚圆/环板轴对称弯曲问题的解析解. 力学学报, 2004, 36(3): 348-353 (Wang Tiejun, Ma Liansheng, Shi Zhaofeng. Analytical solutions for axisymmetric bending of functionally graded circular/annular plates. Acta Mechanica Sinica, 2004, 36(3): 348-353 (in Chinese))
    13 Shao ZS, Wang TJ, Ang KK. Transient thermomechanical stresses of functionally graded cylindrical panels. AIAA Journal, 2007,45(10): 2487-2496
    14 Zhang LW, Zhu P, Liew KM. Thermal buckling of functionally graded plates using a local Kriging meshless method. Composite Structures, 2014, 108: 472-492
    15 Liang X, Wu Z, Wang L, et al. Semianalytical three-dimensional solutions for the transient response of functionally graded material rectangular plates. Journal of Engineering Mechanics, 2015, 141(9):1-17
    16 Apuzzo A, Barretta R, Luciano R. Some analytical solutions of functionally graded Kirchhoff plates. Composites Part B-Engineering,2015, 68: 266-269
    17 Tessler A, Hughes TJR. A three-node Mindlin plate element with improved transverse shear. Computer Methods in Applied Mechanics and Engineering, 1985, 50: 71-91
    18 Huu-Tai T, Trung-Kien N, Vo TP, et al. Analysis of functionally graded sandwich plates using a new first-order shear deformation theory. European Journal of Mechanics a-Solids, 2014, 45: 211-225
    19 Satouri S, Kargarnovin MH, Allahkarami F, et al. Application of third order shear deformation theory in buckling analysis of 2Dfunctionally graded cylindrical shell reinforced by axial stiffeners. Composites Part B-Engineering, 2015, 79: 236-253
    20 Zhang JH, Li GZ, Li SR. Analysis of transient displacements for a ceramic-metal functionally graded cylindrical shell under dynamic thermal loading. Ceramics International, 2015, 41(9): 12378-12385
    21 Dowell EH. Nonlinear oscillations of a fluttering plate. AIAA Journal,1966, 4(7): 1267-1275
    22 Dixon IR, Mei C. Finite element analysis of large-amplitude panel flutter of thin laminates. AIAA Journal, 1993, 31(4): 701-707
    23 夏巍, 杨智春. 超音速气流中受热壁板的稳定性分析. 力学学报,2007, 39(5): 602-609 (Xia Wei, Yang Zhichun. Stability analysis of heated panels in supersonic air flow. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(5): 602-609 (in Chinese))
    24 Yang C, Li G, Wan Z. Aerothermal-aeroelastic two-way coupling method for hypersonic curved panel flutter. Science China- Technological Sciences, 2012, 55(3): 831-840
    25 Yang Z, Zhou J, Gu Y. Integrated analysis on static/dynamic aeroelasticity of curved panels based on a modified local piston theory. Journal of Sound and Vibration, 2014, 333(22): 5885-5897
    26 Li P, Yang Y, Lu L. Nonlinear flutter behavior of a plate with motion constraints in subsonic flow. Meccanica, 2014, 49(12): 2797-2815
    27 Mei G, Zhang J, Xi G, et al. Analysis of supersonic and transonic panel flutter using a fluid-structure coupling algorithm. Journal of Vibration and Acoustics-Transactions of the Asme, 2014, 136(3): 1-11
    28 Sohn KJ, Kim JH. Nonlinear thermal flutter of functionally graded panels under a supersonic flow. Composite Structures, 2009, 88(3):380-387
    29 Prakash T, Singha MK, Ganapathi M. A finite element study on the large amplitude flexural vibration characteristics of FGM plates under aerodynamic load. International Journal of Non-Linear Mechanics,2012, 47(5): 439-447
    30 Haddadpour H, Navazi HM, Shadmehri F. Nonlinear oscillations of a fluttering functionally graded plate. Composite Structures, 2007,79(2): 242-250
  • 期刊类型引用(6)

    1. 王鑫特,刘娟,胡彪,张波,沈火明. 多孔功能梯度压电纳米壳中波传播特性. 应用数学和力学. 2024(02): 197-207 . 百度学术
    2. 刘娟,王鑫特,胡彪,张波,沈火明. 粘弹性基底上功能梯度压电纳米梁波传播特性. 动力学与控制学报. 2024(10): 32-41 . 百度学术
    3. 戴婷,戴宏亮,李军剑,贺其. 含孔隙变厚度FG圆板的湿热力学响应. 力学学报. 2019(02): 512-523 . 本站查看
    4. 刘艮,张伟. 亚音速气流中复合材料悬臂板的非线性振动响应研究. 力学学报. 2019(03): 912-921 . 本站查看
    5. 郑保敬,梁钰,高效伟,朱强华,吴泽艳. 功能梯度材料动力学问题的POD模型降阶分析. 力学学报. 2018(04): 787-797 . 本站查看
    6. 马强,周凤玺,刘杰. 梯度波阻板的地基振动控制研究. 力学学报. 2017(06): 1360-1369 . 本站查看

    其他类型引用(7)

计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 13
出版历程
  • 收稿日期:  2015-09-24
  • 修回日期:  2015-11-22
  • 刊出日期:  2016-05-17

目录

    /

    返回文章
    返回