EI、Scopus 收录
中文核心期刊

带脉冲的三维引力辅助变轨研究

贾建华, 吕敬, 王琪

贾建华, 吕敬, 王琪. 带脉冲的三维引力辅助变轨研究[J]. 力学学报, 2016, 48(2): 437-446. DOI: 10.6052/0459-1879-15-218
引用本文: 贾建华, 吕敬, 王琪. 带脉冲的三维引力辅助变轨研究[J]. 力学学报, 2016, 48(2): 437-446. DOI: 10.6052/0459-1879-15-218
Jia Jianhua, Lü Jing, Wang Qi. POWERED GRAVITY ASSIST IN THREE DIMENSIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 437-446. DOI: 10.6052/0459-1879-15-218
Citation: Jia Jianhua, Lü Jing, Wang Qi. POWERED GRAVITY ASSIST IN THREE DIMENSIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 437-446. DOI: 10.6052/0459-1879-15-218
贾建华, 吕敬, 王琪. 带脉冲的三维引力辅助变轨研究[J]. 力学学报, 2016, 48(2): 437-446. CSTR: 32045.14.0459-1879-15-218
引用本文: 贾建华, 吕敬, 王琪. 带脉冲的三维引力辅助变轨研究[J]. 力学学报, 2016, 48(2): 437-446. CSTR: 32045.14.0459-1879-15-218
Jia Jianhua, Lü Jing, Wang Qi. POWERED GRAVITY ASSIST IN THREE DIMENSIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 437-446. CSTR: 32045.14.0459-1879-15-218
Citation: Jia Jianhua, Lü Jing, Wang Qi. POWERED GRAVITY ASSIST IN THREE DIMENSIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 437-446. CSTR: 32045.14.0459-1879-15-218

带脉冲的三维引力辅助变轨研究

基金项目: 国家自然科学基金资助项目(11372018).
详细信息
    通讯作者:

    贾建华,博士生,主要研究方向:引力辅助机理及轨道设计研究.E-mail:jjh19870911@163.com

  • 中图分类号: V41

POWERED GRAVITY ASSIST IN THREE DIMENSIONS

  • 摘要: 在引力辅助过程中施加脉冲可以有效地改善变轨效果.目前只能对施加小脉冲的情况进行近似计算,当脉冲大于近拱点速度的1%时无法进行分析.针对这一问题,提出了一种解析分析方法,可以计算施加任意大小和方向脉冲的三维引力辅助变轨.基于二体问题,建立了带任意脉冲的三维引力辅助模型,采用8个相互独立的参数对模型进行描述,其中5个参数表征三维引力辅助、一个参数表征脉冲的大小、两个参数表征脉冲的方向;建立了一组坐标系,可以方便地对轨道进行描述;以施加脉冲为界,将轨道划分为前后两段,分别进行公式推导;应用双曲线轨道动力学与坐标变换等技术方法,可以将飞行器的位置矢量和速度矢量表示为上述8个参数的解析公式,进而可以求出变轨导致的速度、能量和轨道倾角的变化量.通过与基于圆型限制性三体问题的数值仿真结果进行对比,验证公式的有效性.应用导出的解析公式分析了施加脉冲的大小和方向对飞行器能量和轨道倾角的影响,并给出了相应规律.结果表明:以最大能量改变为优化目标,施加脉冲的最优方向往往并不是该点速度方向;轨道倾角受到脉冲方向的影响显著.
    Abstract: Applying an impulsive thrust during a close encounter with a celestial body can significantly improve the efficiency of the swing-by maneuver.In the existing literature, no analysis can be carried out when the impulse velocities are bigger than 1% of the orbital velocity of the spacecraft.To solve this problem, powered gravity assist is studied applying an arbitrary impulse with any magnitude and direction.The three-dimensional powered gravity assist maneuver based on the patched-conics approximation can be identified by eight independent parameters, in which five specify the three-dimensional gravity assist and the other three specify the magnitude and the direction of the impulse.Multiple reference frames are established to describe the trajectories before and after the impulse.Using the method of coordinate transformation and hyperbolic orbit dynamics, a set of new analytical equations are derived, including the variation in velocity, angular momentum, energy and inclination of the spacecraft due to the maneuver as a function of the eight parameters.These equations developed here are verified by numerical integrations, using the circular restricted threebody problem.Finally, the influences of the parameters on the orbit of spacecraft are discussed based on the above equations, and some conclusions about the optimal direction to apply the impulse are given.The results show that the optimal direction of the impulse is not parallel to the velocity of the spacecraft, and the orbital inclination is significantly influenced by the direction of the impulse.
  • 1 Strange NJ, Longuski JM. Graphical methods for gravity-assist trajectory design. Journal of Spacecraft and Rockets, 2002, 39(1):9-16
    2 Broucke RA. The celestial mechanics of the gravity assist. In:Proc. of AIAA/AAS Astrodynamics Conference. Washington. D C:American Institute of Aeronautics and Astronautics, 1988:69-78
    3 Campagnola S, Skerritt P, Russell RP. Flybys in the planar, circular, restricted, three-body problem. Celestial Mechanics and Dynamical Astronomy, 2012, 113:343-368
    4 Prado AFBA. Close-approach trajectories in the elliptic Restricted problem. Journal of Guidance, Control and Dynamics, 1997, 20(4):797-802
    5 乔栋,崔平远,崔祜涛. 基于圆型限制性三体模型的借力飞行机理研究. 宇航学报,2009, 30(1):82-87(Qiao Dong, Cui Pingyuan, Cui Hutao. Research on gravity-assist mechanism in circular restricted three-body model. Journal of Astronautics, 2009, 30(1):82-87(in Chinese))
    6 乔栋,崔平远,尚海滨. 基于椭圆型限制性三体模型的借力飞行机理研究. 宇航学报,2010, 31(1):36-43(Qiao Dong, Cui Pingyuan, Shang Haibin. Research on gravity-assist mechanism in elliptic restricted three-body model. Journal of Astronautics, 2010,31(1):36-43(in Chinese))
    7 Felipe G, Prado AFBA. Classification of out-of-plane swing-by trajectories. Journal of Guidance, Control and Dynamics, 1999, 22(5):643-649
    8 贾建华,王琪. 三维引力辅助机理分析. 北京航空航天大学学报, 2012, 38(7):981-986(Jia Jianhua, Wang Qi. Research on gravityassist mechanism based on three-dimension elliptic restricted threebody model. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(7):981-986(in Chinese))
    9 贾建华, 王琪. 三维引力辅助解析分析方法研究. 力学学报, 2013, 45(3):412-420(Jia Jianhua, Wang Qi. An analytical study of gravity assist in three dimensions. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(3):412-420(in Chinese))
    10 Formiga JKS. Souza dos S, Denilson P. An analytical description of the three-dimensional swing-by. Computational & Applied Mathematics, 2015, 34(2):491-506
    11 Curtis HD. 轨道力学. 北京:科学出版社,2009:308-309(Curtis HD. Orbital Mechanics for Engineering Students. Beijing:Science Press,2009:308-309(in Chinese))
    12 Kloster KW, Petropoulos AE, Longuski JM. Europa Orbiter tour design with Io gravity assists. Acta Astronautica, 2011, 68:931-946
    13 Prado AFBA, Gomes VM. Searching for capture and escape trajectories around Jupiter using its Galilean satellites. Computational & Applied Mathematics, 2015, 34(2):451-460
    14 Gong SP, Li JF. Asteroid capture using lunar flyby. Advances in Space Research, 2015, 56(5):848-858
    15 Cai XS, Li JF, Gong SP. Solar sailing trajectory optimization with planetary gravity assist. Sci China-Phys Mech Astron, 2015, 58:014501
    16 Cai X, Chen Y, Li J. Low-thrust trajectory optimization in a fullephemeris model. Acta Mech Sin, 2014, 30(5):615-627
    17 Shen HX, Zhou JP, Peng QB, et al. Multi-objective interplanetary trajectory optimization combining low-thrust propulsion and gravity-assistmaneuvers. Sci China Tech Sci, 2012, 55:841-847
    18 Armellin R, Lavagna M, Ercoli-Finzi A. Aero-gravity assist maneuvers:controlled dynamics modeling and optimization. Celestial Mechanics and Dynamical Astronomy, 2006, 95:391-405
    19 Jordi C, Daniel L. Mission design of guided aero-gravity assist trajectories at Titan. Advances in the Astronautical Sciences, 2010, 135:2149-2168
    20 张万里, 王常虹, 夏红伟等. 气动-引力辅助轨道机动轨迹优化方法. 西南交通大学学报,2011, 46(1):167-174(ZhangWanli,Wang Changhong, Xia Hongwei. et al. Trajectory optimization method of aero-gravity assist orbital maneuver. Journal of Southwest Jiaotong University, 2011, 46(1):167-174(in Chinese))
    21 Prado AFBA. Powered swingby. Journal of Guidance, Control and Dynamic, 1996, 19(5):1142-1147
    22 Casalino L, Colasurdo G, Pastrone D. Simpe strategy for powered swingby. Journal of Guidance, Control and Dynamic, 1999, 22(1):156-159
    23 Ferreira AFS, Prado AFBA. Optimal impulsive control in a powered swingby.//AIAA Guidance, Navigation, and Control(GNC) Conference, Boston USA, 2013
    24 Ferreira AFS, Prado AFBA. Powered swing-by in the elliptic restricted problem. In:Proc. of SpaceOps 2014 Conference, Pasadena USA, 2014
    25 Prado AFBA., Felipe G. An analytical study of the powered swingby to perform orbital maneuvers. Advances in Space Research, 2007, 40:102-112
    26 侯艳伟, 岳晓奎, 张莹. 基于脉冲机动的引力辅助深空探测轨道设计. 西北工业大学学报, 2012, 30(4):491-496(Hou Yanwei, Yue Xiaokui,Zhang Ying. Design of gravity-assist trajectory based impulsive maneuver. Journal of Northwestern Polytechnical University, 2012, 30(4):491-496(in Chinese))
    27 陈杨, 宝音贺西, 李俊峰. 我国小行星探测目标分析与电推进轨道设计. 中国科学:物理学力学天文学, 2011, 41:1104-1111(Chen Yang, Baoyin Hexi, Li Junfeng. Target analysis and low-thrust trajectory design of Chinese asteroid exploration mission. Sci Sin Phys Mech Astron, 2011, 41:1104-1111(in Chinese))
    28 Zhu KJ, Li JF, Baoyin HX. Multi-swingby optimization of mission to saturn using global. Acta Mech Sin, 2009, 25:839-845
    29 Cui PY, Qiao D, Cui HT, et al. Target selection and transfer trajectories design for exploring asteroid mission. Sci China Tech Sci, 2010, 53:1150-1158
    30 Ferreira AFS, Prado AFBA, Winter OC. A numerical study of powered swing-bys around the Moon. Advances in Space Research, 2015, 56:252-272
  • 期刊类型引用(3)

    1. 杨彬,杨洪伟,李爽,尤伟. 基于不同动力引力辅助模型的木星转移轨道设计. 上海航天. 2019(03): 55-61 . 百度学术
    2. 袁国强,李颖晖. 二维稳定流形的自适应推进算法. 力学学报. 2018(02): 405-414 . 本站查看
    3. 郑丹丹,罗建军,张仁勇,刘磊. 基于混合Lie算子辛算法的不变流形计算. 力学学报. 2017(05): 1126-1134 . 本站查看

    其他类型引用(1)

计量
  • 文章访问数:  1018
  • HTML全文浏览量:  130
  • PDF下载量:  531
  • 被引次数: 4
出版历程
  • 收稿日期:  2015-06-13
  • 修回日期:  2015-11-09
  • 刊出日期:  2016-03-17

目录

    /

    返回文章
    返回