EI、Scopus 收录
中文核心期刊

1:1内共振对随机振动系统可靠性的影响

王浩宇, 吴勇军

王浩宇, 吴勇军. 1:1内共振对随机振动系统可靠性的影响[J]. 力学学报, 2015, 47(5): 807-813. DOI: 10.6052/0459-1879-15-058
引用本文: 王浩宇, 吴勇军. 1:1内共振对随机振动系统可靠性的影响[J]. 力学学报, 2015, 47(5): 807-813. DOI: 10.6052/0459-1879-15-058
Wang Haoyu, Wu Yongjun. THE INFLUENCE OF ONE-TO-ONE INTERNAL RESONANCE ON RELIABILITY OF RANDOM VIBRATION SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5): 807-813. DOI: 10.6052/0459-1879-15-058
Citation: Wang Haoyu, Wu Yongjun. THE INFLUENCE OF ONE-TO-ONE INTERNAL RESONANCE ON RELIABILITY OF RANDOM VIBRATION SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5): 807-813. DOI: 10.6052/0459-1879-15-058
王浩宇, 吴勇军. 1:1内共振对随机振动系统可靠性的影响[J]. 力学学报, 2015, 47(5): 807-813. CSTR: 32045.14.0459-1879-15-058
引用本文: 王浩宇, 吴勇军. 1:1内共振对随机振动系统可靠性的影响[J]. 力学学报, 2015, 47(5): 807-813. CSTR: 32045.14.0459-1879-15-058
Wang Haoyu, Wu Yongjun. THE INFLUENCE OF ONE-TO-ONE INTERNAL RESONANCE ON RELIABILITY OF RANDOM VIBRATION SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5): 807-813. CSTR: 32045.14.0459-1879-15-058
Citation: Wang Haoyu, Wu Yongjun. THE INFLUENCE OF ONE-TO-ONE INTERNAL RESONANCE ON RELIABILITY OF RANDOM VIBRATION SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5): 807-813. CSTR: 32045.14.0459-1879-15-058

1:1内共振对随机振动系统可靠性的影响

基金项目: 国家自然科学基金资助项目(11272201,11372271,11132007).
详细信息
    通讯作者:

    吴勇军,副研究员,主要研究方向:非线性随机动力学.E-mail:yj.wu@sjtu.edu.cn

  • 中图分类号: O322;O324

THE INFLUENCE OF ONE-TO-ONE INTERNAL RESONANCE ON RELIABILITY OF RANDOM VIBRATION SYSTEM

Funds: The project was supported by the National Natural Science Foundation of China (11272201, 11372271, 11132007).
  • 摘要: 研究了二自由度耦合非线性随机振动系统在高斯白噪声激励下基于首次穿越模型的可靠性问题. 在1:1内共振情形,原始系统的运动方程经平均后化为一组关于慢变量的伊藤随机微分方程. 建立了后向柯尔莫哥洛夫方程以及庞德辽金方程,在一定的边界条件和(或) 初始条件下求解这两个偏微分方程,分别得到系统的条件可靠性函数以及平均首次穿越时间. 进而建立了无内共振情形系统的后向柯尔莫哥洛夫方程与庞德辽金方程.将无内共振情形的结果与1:1 内共振情形的结果做比较,发现1:1 内共振能显著降低系统可靠性. 用蒙特卡罗数值模拟验证了理论结果的有效性.
    Abstract: Based on first-passage model, the reliability problem of two degrees-of-freedom random vibration system under Gaussian white noise excitations is studied analytically. In the case of 1:1 internal resonance, the equations of motion of the original system are reduced to a set of Itô stochastic differential equations after averaging. The backward Kolmogorov equation and the Pontryagin equation, which determine the conditional reliability function and the mean first-passage time of the random vibration systems, are constructed under appropriate boundary and (or) initial conditions, respectively. To study the influence of the internal resonance on the reliability, the averaged Itô stochastic differential equations, the backward Kolmogorov equation and the Pontryagin equation in the case of non-internal resonance are also derived. Numerical solutions of high-dimensional backward Kolmogorov equation and Pontryagin equation are obtained. The results of resonant case and non-resonant case are compared. It is shown that 1:1 internal resonance can greatly reduce the reliability. All the analytical results are validated by Monte Carlo digital simulation.
  • 吴志强, 陈世栋, 雷娜等. 三层结构模型的内共振和组合共振. 振动与冲击, 2014, 33(8): 1-3 (Wu Zhiqiang, Chen Shidong, Lei Na, et al. Internal and combinational resonances of a three-story structure. Journal of Vibration and Shock, 2014, 33(8): 1-3 (in Chinese))
    熊柳杨, 张国策, 丁虎等. 黏弹性屈曲梁非线性内共振稳态周期响应. 应用数学和力学, 2014, 35(11): 1188-1196 (Xiong Liuyang, Zhang Guoce, Ding Hu, et al. Steady state periodic responses of a viscoelastic buckled beam in nonlinear internal resonance. Applied Mathematics and Mechanics, 2014, 35(11): 1188-1196 (in Chinese))
    Karimpour H, Eftekhari M. Exploiting internal resonance for vibration suppression and energy harvesting from structures using an inner mounted oscillator. Nonlinear Dynamics, 2014, 77: 699-727
    Ji JC. Design of a nonlinear vibration absorber using three-to-one internal resonances. Mechanical Systems and Signal Processing , 2014, 42: 236-246
    Plaksiy KY, Mikhlin YV. Dynamics of nonlinear dissipative systems in the vicinity of resonance. Journal of Sound and Vibration , 2015, 334: 319-337
    Zhang YL, Chen LQ. External and internal resonances of the pipe conveying fluid in the supercritical regime. Journal of Sound and Vibration , 2013, 332: 2318-2337
    Sayed M, Kamel M. Non-linear normal forced vibration modes in systems with internal resonance. Applied Mathematical Modelling, 2012, 36: 310-332
    Beltrán-Carbajal F, Silva-Navarro G. Active vibration control in Duffing mechanical systems using dynamic vibration absorbers. Journal of Sound and Vibration, 2014, 333: 3019-3030
    Ji JC, Zhang N. Suppression of the primary resonance vibrations of a forced nonlinear system using a dynamic vibration absorber. Journal of Sound and Vibration, 2010, 329: 2044-2056
    Kerschen GT, Michael D. Experimental demonstration of transient resonance capture in a system of two coupled oscillators with essential stiffness nonlinearity. Journal of Sound and Vibration, 2007, 299: 822-838
    胡海岩. 应用非线性动力学. 北京:航空工业出版社,2000 (Hu Haiyan. Applied Nonlinear Dynamics. Beijing: Aeronautic Industry Press, 2000 (in Chinese))
    褚亦清, 李翠英. 非线性振动分析. 北京:北京理工大学出版社,1996 (Zhu Yiqing, Li Cuiying. Nonlinear Vibration Analyze. Beijing: Beijing Institute of Technology Press, 1996 (in Chinese))
    朱位秋. 随机振动. 北京: 科学出版社,1998 (Zhu Weiqiu. Random Vibration. Beijing: Science Press, 1998 (in Chinese))
    Huang ZL, Zhu WQ. Exact stationary solutions of averaged equations of stochastically and harmonically excited MDOF quasi-linear systems with internal and or external resonances. Journal of Sound and Vibration, 1997, 204(2): 249-258
    Huang ZL, Zhu WQ. Stochastic averaging of quasi-integrable Hamiltonian systems under combined harmonic and white noise excitations. International Journal of Non-Linear Mechanics, 2004, 39: 1421-1434
    Xu W, He Q, Rong HW, et al. One-to-two internal resonance in two-degrees-of-freedom nonlinear system with narrow-band excitations. Nonlinear Dynamics, 2002, 27: 385-395
    Sapsis TP, Vakakis AF, Bergman LA. Effect of stochasticity on targeted energy transfer from a linear medium to a strongly nonlinear attachment. Probabilistic Engineering Mechanics, 2011, 26: 119-133
    张雷,吴勇军. 外共振耦合Duffing-van der Pol系统的首次穿越. 力学学报, 2012, 44(2): 437-446 (Zhang Lei, Wu Yongjun. First-passage of coupled Duffing-Van Der Pol system in the case of external resonance. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 437-446 (in Chinese))
    Jia WT, Zhu WQ. Stochastic averaging of quasi-integrable and non-resonant Hamiltonian systems under combined Gaussian and Poisson white noise excitations. Nonlinear Dynamics , 2014, 76(2): 1271-1289
    Jia WT, Zhu WQ. Stochastic averaging of quasi-integrable and resonant hamiltonian systems under combined gaussian and poisson white noise excitations. Journal of Applied Mechanics- ASME, 2014, 81(4): 041009-13
    朱位秋. 非线性随机动力学与控制---Hamilton理论体系框架. 北京: 科学出版社,2003 (Zhu Weiqiu. Nonlinear Stochastic Dynamics and Control--Hamiltonian Theoretical Framework. Beijing: Science Press, 2003 (in Chinese))
    陆金甫, 关治. 偏微分方程数值解法. 北京:清华大学出版社,2004 (Lu Jinfu, Guan Zhi. Numerical Methods for Partial Differential Equations. Beijing: Tsinghua University Press, 2004 (in Chinese))
计量
  • 文章访问数:  2327
  • HTML全文浏览量:  115
  • PDF下载量:  767
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-10
  • 修回日期:  2015-07-07
  • 刊出日期:  2015-09-17

目录

    /

    返回文章
    返回