EI、Scopus 收录
中文核心期刊

岩体结构非平衡演化的有效应力原理及长期稳定性分析

张泷, 刘耀儒, 杨强

张泷, 刘耀儒, 杨强. 岩体结构非平衡演化的有效应力原理及长期稳定性分析[J]. 力学学报, 2015, 47(4): 624-633. DOI: 10.6052/0459-1879-14-173
引用本文: 张泷, 刘耀儒, 杨强. 岩体结构非平衡演化的有效应力原理及长期稳定性分析[J]. 力学学报, 2015, 47(4): 624-633. DOI: 10.6052/0459-1879-14-173
Zhang Long, Liu Yaoru, Yang Qiang. EFFECTIVE STRESS PRINCIPLE OF NON-EQUILIBRIUM EVOLUTION AND LONG TERM STABILITY ANALYSIS OF ROCK MASS STRUCTURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4): 624-633. DOI: 10.6052/0459-1879-14-173
Citation: Zhang Long, Liu Yaoru, Yang Qiang. EFFECTIVE STRESS PRINCIPLE OF NON-EQUILIBRIUM EVOLUTION AND LONG TERM STABILITY ANALYSIS OF ROCK MASS STRUCTURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4): 624-633. DOI: 10.6052/0459-1879-14-173
张泷, 刘耀儒, 杨强. 岩体结构非平衡演化的有效应力原理及长期稳定性分析[J]. 力学学报, 2015, 47(4): 624-633. CSTR: 32045.14.0459-1879-14-173
引用本文: 张泷, 刘耀儒, 杨强. 岩体结构非平衡演化的有效应力原理及长期稳定性分析[J]. 力学学报, 2015, 47(4): 624-633. CSTR: 32045.14.0459-1879-14-173
Zhang Long, Liu Yaoru, Yang Qiang. EFFECTIVE STRESS PRINCIPLE OF NON-EQUILIBRIUM EVOLUTION AND LONG TERM STABILITY ANALYSIS OF ROCK MASS STRUCTURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4): 624-633. CSTR: 32045.14.0459-1879-14-173
Citation: Zhang Long, Liu Yaoru, Yang Qiang. EFFECTIVE STRESS PRINCIPLE OF NON-EQUILIBRIUM EVOLUTION AND LONG TERM STABILITY ANALYSIS OF ROCK MASS STRUCTURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4): 624-633. CSTR: 32045.14.0459-1879-14-173

岩体结构非平衡演化的有效应力原理及长期稳定性分析

基金项目: 国家自然科学基金项目(11172150, 51279086)、水沙科学与水利水电工程国家重点实验室科研项目(2013-KY-2) 和教育部新世纪优秀人才支持计划(NCET-13-0323) 资助.
详细信息
    通讯作者:

    张泷, 博士研究生, 主要研究方向:岩石力学与水工结构. E-mail: zhanglong10@mails.tsinghua.edu.cn

  • 中图分类号: TU411.7

EFFECTIVE STRESS PRINCIPLE OF NON-EQUILIBRIUM EVOLUTION AND LONG TERM STABILITY ANALYSIS OF ROCK MASS STRUCTURE

Funds: The project was supported by the National Natural Science Foundation of China (11172150, 51279086), State Key Laboratory of Hydroscience and Engineering (2013-KY-2), and program for New Century Excellent Talents in University (NCET-13-0323).
  • 摘要: 开挖卸荷后的天然岩体往往处于非平衡演化状态, 将直接影响岩体工程结构的正常运行、长期稳定和安全. 时效变形和损伤演化是岩体结构非平衡演化的核心. 在赖斯(Rice) 内变量热力学理论框架下, 提出了岩体结构非平衡演化的有效应力原理, 指出有效应力是总应力中能有效驱动结构演化的部分. 将内变量率形式的非弹性应变率方程和能量耗散率函数表示为有效应力形式, 并提出非弹性余能概念. 给定具体的余能密度函数和内变量演化方程, 得到了考虑损伤的内变量黏塑性应变率方程. 通过相似材料加卸载蠕变试验结果进行参数辨识, 并分别计算了内变量率形式和有效应力形式的黏塑性应变率、能量耗散率和非弹性余能, 并对其进行比较分析. 结果表明:在过渡蠕变和稳态蠕变阶段两种形式的方程计算的黏塑性应变率几乎相等, 但在加速蠕变阶段两者相差较大;非弹性余能和能量耗散率全域积分分别从驱动结构非平衡演化的内在潜力和实际效果的角度表征了结构的非平衡演化状态和演化趋势, 能量耗散率积分更合适用于评价岩体工程结构的长期稳定性. 最后以深埋地下洞室作为工程算例, 并对其长期稳定性进行分析.
    Abstract: After excavation, the disturbed natural rock mass tends to be in non-equilibrium evolution state and affects the safety and stability of engineering structure. The time-dependent deformation and damage evolution are the cores of the non-equilibrium evolution process of rock mass structure. In this paper, the effective stress principle of non-equilibrium evolution is proposed within thermodynamics with internal state variables. The effective stress, which can really derive non-equilibrium evolution process, is only a portion of total stress. The rate of inelastic strain and energy dissipation rate can be expressed in form of effective stress, and concept of inelastic complementary energy is proposed. A creep constitutive equation with damage is derived through giving specific complementary energy density function and evolution function of internal state variables. Parameters identification of degraded one-dimension equation is conducted under one dimensional scene through uniaxial creep test of analogue material by load and unload method. Viscoplastic strain rate, rate of energy dissipation and inelastic complementary energy can be calculated, and the comparative discussion is illustrated. The results indicate that the difference between rates of inelastic strain is minor in primary and secondary creep stages but is major in tertiary stage because of theoretical error. The integral value of rate of energy dissipation in domain and inelastic complementary energy can characterize the non-equilibrium process of structure in actual effect and driving potential perspective respectively, and the latter is a more applicable one to assess the long-term stability of structure. At last, a case about deep buried tunnels is shown and its long-term stability is studied.
  • Fakhimi AA. Fairhurst C. A model for the time-dependent behavior of rock. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1994, 31: 117-126
    陈宗基. 根据流变学与地球动力学观点研究新奥法. 岩石力学与工程学报, 1988, 7(2):97-106 (Tan Tjong Kie. The NATM studied from the viewpoint of rheology and geodynamics. Chinese Journal of Rock Mechanics and Engineering, 1988, 7(2):97-106 (in Chinese))
    周宏伟, 王春萍, 丁靖洋等. 盐岩流变特性及盐腔长期稳定性研究进展. 力学与实践, 2011, 33(5):1-7 (Zhou Hongwei, Wang Chunping, Ding Jingyang, et al. Developments in researches on time-dependent behavior of salt rock and long-term stability. Mechanics in Engineering, 2011, 33(5):1-7(in Chinese))
    Malan DF. Simulating the time-dependent behavior of excavation in hard rock. Rock Mechanics and Rock Engineering, 2002, 35: 225-254
    冷旷代. 岩体结构非平衡演化稳定与控制理论基础研究. [博士论文]. 北京: 清华大学, 2013 (Leng Kuangdai. Research on the fundamental of stability and control of non-equilibirum evolution of rock mass structures. [PhD Thesis]. Beijing: Tsinghua University, 2013 (in Chinese)) e6 郑颖人, 赵尚毅. 岩土工程极限分析有限元法及其应用. 土木工程学报, 2005, 38(1):91-98 (Zheng Yingren, Zhao Shangyi. Limit state finite element method for geotechnical engineering and its application. China Civil Engineering Journal , 2005, 38(1):91-98 (in Chinese))
    [7] 郑宏, 李春光, 李焯芬等. 求解安全系数的有限元法. 岩土工程学报, 2002, 24(5): 626-628 (Zheng Hong, Li Chunguang, Li Zhuofen, et al. Finite element method for solving the factor of safety. Chinese Journal of Geotechnical Engineering, 2002, 24(5):626-628 (in Chinese))
    [8] 蔡美峰, 孔广亚, 贾立宏. 岩体工程系统失稳的能量突变判断准则及其应用. 北京科技大学学报, 1997, 19(4):325-328 (Cai Meifeng, Kong Guangya, Jia Lihong. Criterion of energy catastrophe for rock project system failure in underground engineering. Journal of University of Science and Technology Beijing, 1997, 19(4):325-328 (in Chinese))
    [9] 邵国建, 卓家寿, 章青. 岩体稳定性分析与评判准则研究. 岩石力学与工程学报, 2003, 22(5):691-696 (Shao Guojian, Zhuo Jiashou, Zhang Qing. Research on analysis method and criterion of rockmass stability. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(5):691-696 (in Chinese))
    [10] 陈卫忠, 朱维申, 李术才. 节理岩体断裂损伤耦合的流变模型及应用. 水利学报, 1999, 12:33-37 (Chen Weizhong, Zhu Weishen, Li Shucai. Rheology and fracture damage coupled model for rock mass and its application. Journal of Hydraulic Engineering, 1999, 12:33-37 (in Chinese))
    [11] 熊良宵, 杨林徳, 张尧. 硬岩的复合粘弹塑性流变模型. 中南大学学报(自然科学版), 2010, 41(4):1540-1548 (Xiong Liangxiao, Yang Linde, Zhang Yao. Composite viscoelasto-plastic rheological model for hard rock. Journal of Central South University (Science and Technologym ), 2010, 41(4):1540-1548 (in Chinese))
    [12] Deng JQ, Yang Q, Liu YR. Time-dependent behavior and stability evaluation of gas storage caverns in salt rock based on deformation reinforcement theory. Tunnelling and Underground Space Technology, 2014, 42: 277-292
    [13] 刘建华, 朱维申, 李术才等. 小浪底水利枢纽地下厂房岩体流变与稳定性FLACm 3D数值分析. 岩石力学与工程学报, 2005, 24(14):2484-2489 (Liu Jianhua, Zhu Weishen, Li Shucai, et al. Analysis of rheological characteristics and stability of surrounding rock mass of Xiaolangdi hydrojunction underground caverns by using FLACm 3D. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(14):2484-2489 (in Chinese))
    [14] Masoud G, Mostafa S. Long term stability assessment of Siah Bisheh powerhouse cavern based on displacement back analysis method. Tunnelling and Underground Space Technology, 2009, 24: 574-583
    [15] 张梅花, 高谦, 翟淑花. 高地应力围岩流变特性及竖井长期稳定性分析. 力学学报, 2010, 42(3):474-481 (Zhang Meihua, Gao Qian, Zhai Shuhua. Study on creep properties of rock and long-time stability of shaft in high ground stress zone. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(3):474-481 (in Chinese))
    [16] 陈卫忠, 伍国军, 戴永浩等. 废弃盐穴地下储气库稳定性研究. 岩石力学与工程学报, 2006, 25(4):848-854 (Chen Weizhong, Wu Guojun, Dai Yonghao, et al. Stability analysis of abandoned salt caverns used for underground gas storage. Chinese Journal of Rock Mechanics and Engineering , 2006, 25(4):848-854 (in Chinese))
    [17] Park SW, Richard Kim Y, Schapery RA. viscoelastic continuum damage model and its application to uniaxial behavior of asphalt concrete. Mechanics of Materials, 1996, 24: 241-255
    [18] Chaboche JL. Thermodynamic formulation of application to the viscoplasticity and viscoelasticity of metal and polymers. International Journal of Solids and Structure, 1997, 34: 2239-2254
    [19] Voyiadis GZ, Shojaei A, Li GQ. A thermodynamic consistent damage and healing model for self healing materials. International Journal of Plasticity, 2011, 27: 1025-1044
    [20] Zhu HR, Sun L. A viscoelastic-viscoplastic damage constitutive model for asphalt mixtures based on thermodynamics. International Journal of Plasticity, 2013, 40: 81-100
    [21] Yang Q, Liu YR, Chen YR, et al. Deformation reinforcement theory and its application to high arch dam. Science in China Series E: Technological and Sciences, 2008, 51(Supp I): 32-47
    [22] 杨强, 刘耀儒, 陈英儒等. 变形加固理论及高拱坝整体稳定与加固分析. 岩石力学与工程学报, 2008, 27(6):1121-1136 (Yang Qiang, Liu Yaoru, Chen Yingru, et al. Deformation reinforcement theory and global stability and reinforcement of high arch dams. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(6):1121-1136 (in Chinese))
    [23] Yang Q, Leng KD. Chang Q, et al. Failure Mechanism and Control of Geotechnical Structures. In: Proceedings of the 2nd International Symposium on Constitutive Modeling of Geomaterials - Advances and New Applications, Beijing, China, 2012, 63-87
    [24] Evans WJ, Harrison GF. The development of universal equation for secondary creep rates in pure metals and engineering alloys. Metal Science, 1976, 10(9): 307-313
    [25] Rice JR. Inelastic constitutive relation for solids: an internal- variable theory and its application to metal plasticity. Journal of Mechanics and Physics of Solids, 1971, 19: 433-455
    [26] Yang Q, Liu YR, Feng XQ, et al. Time-independent plasticity related to critical point of free energy function and functional. Journal of Engineering Materials and Technology, 2014, 136: 0210011-2010019
    [27] Fischer FD, Svoboda J, Petryk H. Thermodynamic extremal principle for irreversible processes in material science. Acta Material, 2014, 67: 1-20
    [28] Schapery RA. Nonlinear viscoelastic and viscoplastic constitutive equations with growing damage. International Journal of Fracture, 1999, 97: 33-66
    [29] 张泷, 刘耀儒, 杨强等. 考虑损伤的内变量黏弹-黏塑性本构方程. 力学学报, 2014, 46(4): 572-581 (Zhang Long, Liu Yaoru, Yang Qiang, et al. An internal state variable viscoelastic-viscoplastic constitutive equation with damage. Chinese Journal of Theoretical and applied mechanics, 2014, 46(4): 572-581 (in Chinese))
    [30] Zhang L, Liu YR, Yang Q. Evaluation of reinforcement and analysis of stability of high arch dam based on gaomechanical model testing. Rock Mechanics and Rock Engineering, 2015, 48(2): 803-818
    [31] Li YS, Xia CC. Time-dependent tests on intact rocks in uniaxial compression. International Journal of Rock Mechanics and Mining Science, 2000, 37: 467-475
计量
  • 文章访问数:  1203
  • HTML全文浏览量:  119
  • PDF下载量:  727
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-11
  • 修回日期:  2015-04-19
  • 刊出日期:  2015-07-17

目录

    /

    返回文章
    返回