INTEGRATED DESIGN OF FOREBODY/INLET WITH DUAL-WAVERIDER IN THE STREAM DIRECTION BASED ON DISCRETE ISO-CONTRACTION RATIO
-
摘要: 前体/进气道一体化设计是高超声速飞行的关键技术, 一体化设计的核心是前体与进气道在基准流场上的气动融合. 针对腹部进气布局中前体压缩后的非均匀流影响进气道性能的问题, 文章基于局部收缩比处处一致的思想, 提出了离散等收缩比设计方法, 实现了乘波前体/内转式进气道流向气动融合与遵循气动规律的变截面流道设计. 将进气道的三维流场分解成一簇具有相同收缩比的三维流管, 视每根流管侧壁为轴对称流场; 以锥导乘波前体压缩后的非均匀流作为来流条件, 以总压恢复为目标对每根流管进行优化设计; 通过匹配激波反射位置将流管重新组合起来, 流管的对应边界组成内转式变截面进气道. 该设计方法适配任何已知的非均匀来流, 可灵活控制唇口位置, 且适用于任意形状之间的变截面转换. 数值研究表明, 依托该方法设计的一体化构型性能符合预期, 出口流场均匀, 具有优越的抗反压能力, 且非设计点流场波系结构良好. 离散等收缩比设计方法为腹部进气布局中前体/进气道一体化气动融合设计提供了新思路.
-
关键词:
- 高超声速前体/进气道 /
- 一体化 /
- 离散等收缩比 /
- 流管划分 /
- 双乘波
Abstract: The integrated forebody/inlet design is an essential enabler for air vehicles targeting hypersonic flight regimes. The crux of this integrated design lies in achieving the aerodynamic fusion between the forebody and inlet in the baseline flow field. Based on the idea of the discrete equal contraction ratio consistent everywhere, this study puts forward a novel discrete iso-contraction ratio design approach to mitigate the detrimental impact of nonuniform flow induced by compression of the forebody on inlet performance in a ventral inlet configuration. This proposed method successfully attains the targeted aerodynamic fusion design between the waverider forebody and inward-turning inlet flows in conjunction with an aerodynamically-contoured variable cross-section duct design. In the proposed way, a three-dimensional inlet flowfield is decomposed into a bundle of three-dimensional flow tubes, which share identical contraction ratios. The side wall of each stream tube is treated as a virtual axisymmetric flowfield, and we optimize each three-dimensional stream tube by taking the nonuniform flow compressed by the conical-derived waverider forebody as design conditions and total pressure recovery as the design objective. These three-dimensional tubes are recombined into an inward-turning, variable cross-section inlet configuration by aligning shock reflection locations in the flow direction, with the respective three-dimensional tube boundaries forming the inlet contours. This design approach accommodates any given nonuniform inlet flow, allows flexible control over lip positioning, and enables variable cross-section transitions between arbitrary geometries. The numerical study is performed to preliminarily investigate the performance of the integrated configuration of waverider forebody and inward-turning inlet, and the results validate that the integrated configuration developed using this proposed method meets anticipated performance, evidenced by a uniform outlet flow and enhanced resistance to unstart. Favorable flow structures are also maintained at off-design conditions. This discrete iso-contraction ratio design methodology offers new perspectives on enabling aerodynamic fusion for integrated forebody/inlet designs in ventral inlet layouts.-
Key words:
- hypersonic forebody/inlet /
- integration /
- iso-contraction ratio /
- stream tube division /
- dual-waverider
-
表 1 Ma5 ~ Ma7来流条件下, 攻角−2° ~ 6°一体化构型的压比
Table 1. Pressure ratio of the forebody/inlet configuration when Ma5 ~ Ma7, AOA−2° ~ 6°
AOA Ma5 Ma6 Ma7 −2 15.985 18.082 19.306 0 19.145 22.933 25.714 2 24.687 29.196 34.447 4 28.701 37.016 40.659 6 34.129 44.098 48.530 表 2 Ma5 ~ Ma7来流条件下, 攻角−2° ~ 6°一体化构型的总压恢复
Table 2. Total pressure recovery of the forebody/inlet configuration when Ma5 ~ Ma7, AOA−2° ~ 6
AOA Ma5 Ma6 Ma7 −2 0.579 0.480 0.460 0 0.594 0.501 0.479 2 0.557 0.501 0.433 4 0.585 0.486 0.408 6 0.562 0.455 0.356 表 3 Ma5 ~ Ma7来流条件下, 攻角−2° ~ 6°一体化构型的出口马赫数
Table 3. Mach number of the exit of the forebody/inlet configuration when Ma5 ~ Ma7, AOA−2° ~ 6°
AOA Ma5 Ma6 Ma7 −2 2.508 2.973 3.544 0 2.416 2.867 3.412 2 2.228 2.737 3.172 4 2.186 2.594 3.070 6 2.059 2.522 2.894 表 4 Ma5 ~ Ma7来流条件下, 攻角−2° ~ 6°一体化构型的流量捕获
Table 4. Flow mass capture of the forebody/inlet configuration when Ma5 ~ Ma7, AOA−2° ~ 6°
AOA Ma5 Ma6 Ma7 −2 0.522 0.746 0.789 0 0.813 0.898 0.982 2 0.922 1.056 1.161 4 1.046 1.212 1.321 6 1.158 1.356 1.462 表 5 侧滑状态下前体/进气道一体化性能
Table 5. Integrated performance of the forebody/inlet under sideslip conditions
Ma $ \dot{m} $ Maout $ \sigma $ $ {P}_{r} $ 5 0.880 2.385 0.587 19.96 6 0.956 2.616 0.450 24.41 7 0.834 3.272 0.408 22.41 -
[1] 黄志澄. 高超声速大博弈. 太空探索, 2014, 05: 22-27 (Huang Zhicheng. Hypersonic game. Space Exploration, 2014, 05: 22-27 (in Chinese) doi: 10.3969/j.issn.1009-6205.2014.02.022 Huang Zhicheng . Hypersonic game. Space Exploration,2014 ,05 :22 -27 (in Chinese) doi: 10.3969/j.issn.1009-6205.2014.02.022[2] 岳连捷, 张旭, 张启帆等. 高马赫数超燃冲压发动机技术研究进展. 力学学报, 2022, 54(2): 263-288 (Yue Lianjie, Zhang Xu, Zhang Qifan, et al. Research progress on high-mach-number scramjet engine. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 263-288. (in Chinese) Yue Lianjie, Zhang Xu, Zhang Qifan, et al . Research progress on high-mach-number scramjet engine. Chinese Journal of Theoretical and Applied Mechanics,2022 ,54 (2 ):263 -288 . (in Chinese)[3] 罗世彬, 孙雨航, 刘俊等. 高超声速乘波前体/进气道一体化设计综述. 空天技术, 2022, 06: 24-48 (Luo Shibin, Sun Yuhang, Liu Jun, et al. Review of hypersonic waverider forebody/inlet integrated design. Aerospace Technology, 2022, 06: 24-48(in Chinese) Luo Shibin, Sun Yuhang, Liu Jun, et al . Review of hypersonic waverider forebody/inlet integrated design. Aerospace Technology,2022 ,06 :24 -48 (in Chinese)[4] Ding F, Liu J, Shen CB, et al. Novel approach for design of a waverider vehicle generated from axisymmetric supersonic flows past a pointed von Karman ogive. Aerospace Science and Technology, 2015, 42: 297-308 doi: 10.1016/j.ast.2015.01.025 [5] 孟宇鹏, 高雄, 朱守梅等. 超声速颌下乘波进气道一体化设计. 推进技术, 2018, 39(8): 1720-1727 (Meng Yupeng, Gao Xiong, Zhu Shoumei, et al. Integration design of supersonic waverider chin inlet. Journal of Propulsion Technology, 2018, 39(8): 1720-1727 (in Chinese) doi: 10.13675/j.cnki.tjjs.2018.08.005 Meng Yupeng, Gao Xiong, Zhu Shoumei, et al . Integration design of supersonic waverider chin inlet. Journal of Propulsion Technology,2018 ,39 (8 ):1720 -1727 (in Chinese) doi: 10.13675/j.cnki.tjjs.2018.08.005[6] Heiser WH, Pratt DT. Pratt. Hypersonic Airbreathing Population. Reston, VA: AIAA. 1994: 197-267 [7] 蔡国飚, 徐大军. 高超声速飞行器技术. 北京: 科学出版社, 2012 (Cai Guobiao, Xu Dajun. Hypersonic Vehicle Technology. Beijing: Science Press, 2012 (in Chinese)Cai Guobiao, Xu Dajun. Hypersonic Vehicle Technology. Beijing: Science Press, 2012 (in Chinese) [8] Smith TR, Bowcutt KG. Integrated hypersonic inlet design: UAS, 08256706 B1. 2012-09-04 [9] 崔凯, 胡守超, 李广利等. 双旁侧进气高超声速飞行器概念设计与评估. 中国科学: 科学技术, 2013, 43(10): 1085-1093 (Cui Kai, Hu Shouchao, Li Guangli, et al. Conceptual design and aerodynamic evaluation of hypersonic airplane with double flanking air inlets. Scientia Sinica Technological Sciences, 2013, 56: 1980-1988 (in Chinese)Cui Kai, Hu Shouchao, Li Guangli, et al. Conceptual design and aerodynamic evaluation of hypersonic airplane with double flanking air inlets. Scientia Sinica Technological Sciences, 2013, 56: 1980-1988 (in Chinese) [10] Langener T, Steelant J, Roncioni P, et al. Preliminary performance analysis of the LAPCAT-MR2 by means of nose-to-tail computations. 2012, AIAA-2012-5872 [11] Spravka JJ, Jorris TR. Current hypersonic and space vehicle flight test and instrumentation. Air Force Test Center Edwards, 2015, 15: 412tw-pa-15264 [12] 郭宇辰. SR-72 高超声速无人侦察机三维重建及其气动特性分析[硕士论文]. 江苏: 南京航空航天大学, 2016 (Guo Zhenyu. Three-dimensions reconstruction and analysis of aerodynamic of SR-72 hypersonic unmanned reconnaissance aircraft. [Master Thesis]. Jiangsu: Nanjing University of Aeronautics and Astronautics, 2016 (in Chinese)Guo Zhenyu. Three-dimensions reconstruction and analysis of aerodynamic of SR-72 hypersonic unmanned reconnaissance aircraft. [Master Thesis]. Jiangsu: Nanjing University of Aeronautics and Astronautics, 2016 (in Chinese) [13] 杨青格, 张帆. 俄罗斯“锆石”高超声速导弹研究进展. 中国航天, 2022(11): 61-65 (Yang Qingge, Zhang Fan. Research progress on Russian "Zircon" hypersonic missile. Aerospace China, 2022(11): 61-65 (in Chinese) doi: 10.3969/j.issn.1002-7742.2022.11.012 Yang Qingge, Zhang Fan . Research progress on Russian "Zircon" hypersonic missile. Aerospace China,2022 (11 ):61 -65 (in Chinese) doi: 10.3969/j.issn.1002-7742.2022.11.012[14] 黄河峡, 谭慧俊, 庄逸等. 高超声速进气道/隔离段内流特性研究 进展. 推进技术, 2018, 39(10): 2252-2273 (Huang Hexia, Tan Huijun, Zhuang Yi, et al. Progress in internal flow characteristics of Hypersonic Inlet/Isolator. Journal of Propulsion Technology, 2018, 39(10): 2252-2273 (in Chinese) Huang Hexia, Tan Huijun, Zhuang Yi, et al . Progress in internal flow characteristics of Hypersonic Inlet/Isolator. Journal of Propulsion Technology,2018 ,39 (10 ):2252 -2273 (in Chinese)[15] 乔文友, 余安远, 杨大伟等. 基于前体激波的内转式进气道一体化设计. 航空学报, 2018, 39(10): 65-76 (Qiao Wenyou, Yu Anyuan, Yang Dawei, et al. Integration design of inward-turning inlets based an forebody shock wave. Acta Aeronautica et Astronautica Sinica, 2018, 39(10): 65-76 (in Chinese) doi: 10.7527/S1000-6893.2018.22078 Qiao Wenyou, Yu Anyuan, Yang Dawei, et al . Integration design of inward-turning inlets based an forebody shock wave. Acta Aeronautica et Astronautica Sinica,2018 ,39 (10 ):65 -76 (in Chinese) doi: 10.7527/S1000-6893.2018.22078[16] Zhang WH, Liu J, Ding F, et al. Novel integration methodology for an inward turning waverider forebody/inlet. Applied Physics & Engineering, 2019, 20(12): 918-926 [17] 乔文友. 可排除前体低能量的高超声速三维内收缩式进气道研 究. [博士论文]. 南京: 南京航空航天大学, 2015 (Qiao Wenyou. Design and investigation of a novel hypersonic three-dimensional turning inlet for removing forebody low kinetic flow. [PhD Thesis]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015 (in Chinese)Qiao Wenyou. Design and investigation of a novel hypersonic three-dimensional turning inlet for removing forebody low kinetic flow. [PhD Thesis]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015 (in Chinese) [18] He XZ, Le JL, Zhou Zheng, et al. Osculating inward turning cone waverider/inlet (OICWI) design methods//18th AIAA/3AF International Planes and Hypersonic Systems and Technology Conference. 24 - 28 September 2012, Tours, France, AIAA 2012-5810 [19] Smart MK, Trexler CA, Mach 4 performance of hypersonic inlet with rectangular-to-elliptical shape transition, AIAA Journal of Power and Propulsion, 2004, 20(2): 288-293 [20] 南向军, 张堃元, 金志光等. 矩形转圆形高超声速内收缩进气道数值及试验研究. 航空学报, 2011, 32(6): 988-996 (Nan Xiangjun, Zhang Kunyuan, Jin Zhiguang, et al. Numerical and experimental investigation of hypersonic inward turning inlets with rectangular to circular shape transition. Acta Aeronautica et Astronautica Sinica, 2011, 32(6): 988-996 (in Chinese) Nan Xiangjun, Zhang Kunyuan, Jin Zhiguang, et al . Numerical and experimental investigation of hypersonic inward turning inlets with rectangular to circular shape transition. Acta Aeronautica et Astronautica Sinica,2011 ,32 (6 ):988 -996 (in Chinese)[21] You YC, Liang DW, Cai K. Numerical research of three-dimensional sections controllable internal waverider hypersonic inlet//4th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit 21 - 23 July 2008, Hartford, CT, AIAA-2008-4708 [22] 尤延铖, 梁德旺. 基于内乘波概念的三维变截面高超声速进气道. 中国科学: 科学技术, 2009, 39(08): 1483-1494 (You Yancheng, Liang Dewang. Design concept of three-dimensional section controllable internal waverider hypersonic inlet. Scientia Sinica Technological Sciences, 2009, 52(7): 2017-2028 (in Chinese)You Yancheng, Liang Dewang. Design concept of three-dimensional section controllable internal waverider hypersonic inlet. Scientia Sinica Technological Sciences, 2009, 52(7): 2017-2028 (in Chinese) [23] Sabean JW, Lewis MJ. Computational optimization of a hypersonic rectangular-to- circular inlet. Journal of Propulsion and Power. 2001, 17(3): 571-578 [24] Xiao YB, Yue LJ, Ma SH. Design methodology for shape transition inlets based on constant contraction of discrete stream tubes. Proceedings of The Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering, 2016, 230(8): 1496-1506 doi: 10.1177/0954410015613112 [25] 郑晓刚, 李中龙, 李怡庆等. 曲锥前体/内转进气道一体化设计与试验研究. 实验流体力学, 2019, 33(5): 29-36, 48 (Zheng Xiaogang, Li Zhonglong, Li Yiqing, et al. Integrated design and experimental research for curved forebody and 3D inward turning inlet. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 29-36, 49 (in Chinese)Zheng Xiaogang, Li Zhonglong, Li Yiqing, et al. Integrated design and experimental research for curved forebody and 3D inward turning inlet. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 29-36, 49 (in Chinese) [26] 贺旭照, 卫锋, 刘福军等. 最小波阻锥导乘波体和三维内转式进气道一体化设计. 空气动力学学报, 2022, 40(1): 77-83 (He Xuzhao, Wei Feng, Liu Fujun et al. Integrated design of minimal wave drag cone-derived waveriders and three-dimensional inward turning inlets. Acta Aerodynamica Sinica, 2022, 40(1): 77-83 (in Chinese) doi: 10.7638/kqdlxxb-2021.0375 He Xuzhao, Wei Feng, Liu Fujun et al . Integrated design of minimal wave drag cone-derived waveriders and three-dimensional inward turning inlets. Acta Aerodynamica Sinica,2022 ,40 (1 ):77 -83 (in Chinese) doi: 10.7638/kqdlxxb-2021.0375[27] Jiao ZH, Wang XY, Deng F, et al. Numerical simulation research on a forebody /inlet integration scheme. Tactical Missile Technology. 2017(1): 40-46 (in Chinese) [28] 焦子涵, 王雪英, 范宇等. 类乘波前体/进气道一体化设计与仿真研究. 兵器装备工程学报, 2016, 37(9): 152-156 (Jiao Zihan, Wang Xueying, Fanyu, et al. Sim-waverider forebody/Inlet configuration. Journal of Ordnance Equipment Engineering, 2016, 37(9): 152-156 (in Chinese) doi: 10.11809/scbgxb2016.09.035 Jiao Zihan, Wang Xueying, Fanyu, et al . Sim-waverider forebody/Inlet configuration. Journal of Ordnance Equipment Engineering,2016 ,37 (9 ):152 -156 (in Chinese) doi: 10.11809/scbgxb2016.09.035[29] 王俊琦, 赵海刚, 任智勇. 乘波体与二元高超声速进气道一体化设计研究. 燃气涡轮试验与研究, 2018, 31(1): 13-17, 23 (Wang Junqi, Zhao Haigang, Ren Zhiyong. An integrated design of the 2D hypersonic inlet with a waverider. Gas Turbine Experiment and Research, 2018, 31(1): 13-17, 23 (in Chinese) doi: 10.3969/j.issn.1672-2620.2018.01.003 Wang Junqi, Zhao Haigang, Ren Zhiyong . An integrated design of the 2D hypersonic inlet with a waverider. Gas Turbine Experiment and Research,2018 ,31 (1 ):13 -17, 23 (in Chinese) doi: 10.3969/j.issn.1672-2620.2018.01.003[30] 谢文忠, 郭荣伟. 4种布局形式下超声速飞行器进气道气动特性实验对比. 南京航空航天大学学报, 2011, 43(1): 13-17 (Xie Wenzhong, Guo Rongwei. Mixed-compression supersonic inlets based on four air-breathing aircraft configurations. Journal of Nanjing University of Aeronautics & Astronautics, 2011, 43(1): 13-17 (in Chinese) doi: 10.3969/j.issn.1005-2615.2011.01.003 Xie Wenzhong, Guo Rongwei . Mixed-compression supersonic inlets based on four air-breathing aircraft configurations. Journal of Nanjing University of Aeronautics & Astronautics,2011 ,43 (1 ):13 -17 (in Chinese) doi: 10.3969/j.issn.1005-2615.2011.01.003[31] 杨大伟, 余安远, 韩亦宇等. 内转式进气道自起动性能研究. 推进技术, 2019, 40(1): 76-83 (Yang Dawei, Yu Anyuan, Han Yiyu, et al. Study on self-starting characteristics of an inward turning inlet. Journal of Propulsion Technology, 2019, 40(1): 76-83 (in Chinese) doi: 10.13675/j.cnki.tjjs.170782 Yang Dawei, Yu Anyuan, Han Yiyu, et al . Study on self-starting characteristics of an inward turning inlet. Journal of Propulsion Technology,2019 ,40 (1 ):76 -83 (in Chinese) doi: 10.13675/j.cnki.tjjs.170782 -