EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CoCrFeMnNi高熵合金冲击波响应与层裂强度的分子动力学研究

杜欣 袁福平 熊启林 张波 阚前华 张旭

杜欣, 袁福平, 熊启林, 张波, 阚前华, 张旭. CoCrFeMnNi高熵合金冲击波响应与层裂强度的分子动力学研究. 力学学报, 2022, 54(8): 1-10 doi: 10.6052/0459-1879-22-239
引用本文: 杜欣, 袁福平, 熊启林, 张波, 阚前华, 张旭. CoCrFeMnNi高熵合金冲击波响应与层裂强度的分子动力学研究. 力学学报, 2022, 54(8): 1-10 doi: 10.6052/0459-1879-22-239
Du Xin, Yuan Fuping, Xiong Qilin, Zhang Bo, Kan Qianhua, Zhang Xu. Shock wave response and spall strength in cocrfemnni high-entropy alloy: a molecular dynamics study. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 1-10 doi: 10.6052/0459-1879-22-239
Citation: Du Xin, Yuan Fuping, Xiong Qilin, Zhang Bo, Kan Qianhua, Zhang Xu. Shock wave response and spall strength in cocrfemnni high-entropy alloy: a molecular dynamics study. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 1-10 doi: 10.6052/0459-1879-22-239

CoCrFeMnNi高熵合金冲击波响应与层裂强度的分子动力学研究

doi: 10.6052/0459-1879-22-239
基金项目: 国家自然科学基金(11872321, 12192214, 12072295)、非线性力学国家重点实验室开放基金(2022年)资助
详细信息
    作者简介:

    张旭, 教授, 主要研究方向: 多尺度力学. E-mail: xzhang@swjtu.edu.cn

SHOCK WAVE RESPONSE AND SPALL STRENGTH IN CoCrFeMnNi HIGH-ENTROPY ALLOY: A MOLECULAR DYNAMICS STUDY

  • 摘要: 高熵合金未来有望应用于航空航天和深海探测等领域, 并且不可避免地会受到极端冲击载荷作用, 甚至会发生层裂. 本文采用分子动力学(MD)方法, 研究了CoCrFeMnNi单晶高熵合金冲击时的冲击波响应、层裂强度以及微观结构演化的取向相关性和冲击速度相关性. 模拟结果表明, 在沿[110]和[111]方向进行冲击时产生了弹塑性双波分离现象, 且随着冲击速度的增加呈现出先增强后减弱的变化趋势, 但在沿[100]方向冲击时未出现双波分离现象. 在冲击过程中, 大量无序结构产生且随冲击速度的增加而增加, 使得层裂强度随冲击速度的增加而减小. 此外, 层裂强度也具有取向相关性. 沿[100]方向冲击时产生了大量体心立方(BCC)中间相, 抑制了层错以及无序结构的产生, 使得[100]方向的层裂强度最高; 层裂初期微孔洞形核区域无序结构含量大小关系的转变, 使得[111]方向的层裂强度在冲击速度较低时(Up≤0.9 km/s)大于[110]方向, 而在冲击速度较大时(Up≥1.2 km/s)略小于[111]方向. 研究成果有望为 CoCrFeMnNi高熵合金在极端冲击条件下的应用提供理论支撑和数据积累.

     

  • 图  1  x方向为[100]取向的单晶CoCrFeMnNi高熵合金原子模型. 黄色和红色平面分别代表虚拟墙和自由面

    Figure  1.  Atomistic model of single-crystal CoCrFeMnNi high-entropy alloy with [100] orientation in x direction. The yellow and red planes represent virtual wall and free surface, respectively

    图  2  自由面速度演化: (a)沿[100]方向冲击; (b)沿[110]方向冲击; (c)沿[111]方向冲击

    Figure  2.  Evolutions of free surface velocity: (a) Shocking in the direction of [100]; (b) Shocking in the direction of [110]; (c) Shocking in the direction of [111]

    图  3  采用CNA方法分析以0.6 km/s的冲击速度沿[110]和[111]方向冲击时的微观组织演化: (a) [110]方向; (b) [111]方向

    Figure  3.  Microstructure evolutions by CNA at the 0.6 km/s shock velocity along the [110] and [111] directions: (a) [110] direction; (b) [111] direction

    图  4  冲击5 ps时粒子速度剖面图: (a) [100]方向; (b) [110]方向; (c) [111]方向

    Figure  4.  Stress profile at 5 ps: (a) [100] direction; (b) [110] direction; (c) [111] direction

    图  5  采用三种方法得到沿[100], [110]和[111]方向冲击时层裂强度与冲击速度的关系: (a) [100]方向; (b) [110]方向; (c) [111]方向

    Figure  5.  Three methods are used to obtain the relationship between spall strength and shock velocity when the shocking along the [100], [110] and [111] directions: (a) [100] direction; (b) [110] direction; (c) [111] direction

    图  6  以0.6和0.9 km/s的速度沿[110]冲击时的温度剖面图

    Figure  6.  Stress profile in the [110] direction at the shock velocities of 0.6 and 0.9 km/s

    图  7  采用最大拉伸应力方法得到沿[100], [110]和[111]方向冲击时层裂强度与冲击速度的关系

    Figure  7.  The maximum tensile stress method is used to obtain the relationship between spall strength and shock velocity when shocked along the [100], [110] and [111] directions

    图  8  采用CNA方法分析以0.9 km/s 和1.5 km/s的冲击速度沿[100], [110]和[111]方向冲击时的微观组织演化: (a)-(b)以0.9和1.5 km/s的冲击速度沿[100]方向冲击; (c)-(d)以0.9 km/s和1.5 km/s的冲击速度沿[110]方向冲击; (e)-(f)以0.9 km/s和1.5 km/s的冲击速度沿[111]方向冲击

    Figure  8.  Microstructure evolutions by CNA at the shock velocities of 0.9 km/s and 1.5 km/s along the [100], [110] and [111] directions: (a)-(b) 0.9 km/s and 1.5 km/s shock velocities along [100] direction; (c)-(d) 0.9 and 1.5 km/s shock velocities along [110] direction; (e)-( f) 0.9 km/s and 1.5 km/s shock velocities along [111] direction

    图  9  沿[100]方向以0.9 km/s的速度冲击时的应力剖面图

    Figure  9.  Stress profile in the [100] direction at the shock velocities of 0.9 km/s

    图  10  沿[100]方向以0.9 km/s的速度冲击时的微结构和温度演化

    Figure  10.  Microstructure and temperature evolutions in the [100] direction at the shock velocities of 0.9 km/s

    图  11  自由面速度达到峰值时无序结构含量

    Figure  11.  The content of disordered structure at the peak free surface velocity stage

    图  12  沿[110]和[111]方向冲击时微孔洞形核区域的无序结构含量

    Figure  12.  The content of disordered structure in the microvoid nucleation region along the [110] and [111] directions

  • [1] Qiu J, Jin T, Xiao GS, et al. Effects of pre-compression on the hardness of CoCrFeNiMn high entropy alloy based an asymmetrical yield criterion. Journal of Alloys and Compounds, 2019, 802: 93-102 doi: 10.1016/j.jallcom.2019.06.159
    [2] 吕昭平, 雷智锋, 黄海龙等. 高熵合金的变形行为及强韧化. 金属学报, 2019, 811: 152000-359 doi: 10.1016/j.jallcom.2019.152000

    Klimova MV, Semenyuk AO, Shaysultanov DG, et al. Effect of carbon on cryogenic tensile behavior of CoCrFeMnNi-type high entropy alloys. Journal of Alloys and Compounds, 2019, 811: 152000-359 doi: 10.1016/j.jallcom.2019.152000
    [3] 吕昭平, 雷智锋, 黄海龙等. 高熵合金的变形行为及强韧化. 金属学报, 2018, 54(3): 1553-1566

    Lü Zhaoping, Lei Zhifeng, Huang Hailong, et al. Deformation behavior and toughening ofhigh-entropy alloys. Acta Metallurgica Sinica, 2018, 54(3): 1553-1566 (in Chinese))
    [4] 李建国, 黄瑞瑞, 张倩等. 高熵合金的力学性能及变形行为研究进展. 力学学报, 2020, 52(2): 333-359

    Li Jianguo, Huang Ruirui, Zhang Qian, et al. Mechanical properties and behaviors of high entropy alloys. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 333-359 (in Chinese)
    [5] Su ZX, Shi T, Yang JX, et al. The effect of interstitial carbon atoms on defect evolution in high entropy alloys under helium irradiation. Acta Materialia, 2022, 233: 117955 doi: 10.1016/j.actamat.2022.117955
    [6] Cantor B, Chang IT, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering A, 2004, 375-377: 213-218 doi: 10.1016/j.msea.2003.10.257
    [7] Bertin N, Sills RB, Cai W. Frontiers in the Simulation of Dislocations. Annual Review of Materials Research, 2020, 50(1): 437-464 doi: 10.1146/annurev-matsci-091819-015500
    [8] Jiang DD, Shao JL, Wu B, et al. Sudden change of spall strength induced by shock defects based on atomistic simulation of single crystal aluminum. Scripta Materialia, 2022, 210: 114474 doi: 10.1016/j.scriptamat.2021.114474
    [9] Li WH, Hahn EN, Branicio P. S, et al. Defect reversibility regulates dynamic tensile strength in silicon carbide at high strain rates. Scripta Materialia, 2022, 213: 114593
    [10] Jian WR, Xie ZC, Xu SZ, et al. Shock-induced amorphization in medium entropy alloy CoCrNi. Scripta Materialia, 2022, 209: 114379 doi: 10.1016/j.scriptamat.2021.114379
    [11] Cekil HC, Ozdemir M. The behaviour of Boron Carbide under shock compression conditions: MD simulation results. Computational Materials Science, 2022, 201: 110872 doi: 10.1016/j.commatsci.2021.110872
    [12] Zhu Y, Hu J, Huang S, et al. Molecular dynamics simulation on spallation of [111] Cu/Ni nano-multilayers: Voids evolution under different shock pulse duration. Computational Materials Science, 2022, 202: 110923 doi: 10.1016/j.commatsci.2021.110923
    [13] Xie ZC, Jian WR, Xu SZ, et al. Role of local chemical fluctuations in the shock dynamics of medium entropy alloy CoCrNi. Acta Materialia, 2021, 221: 117380 doi: 10.1016/j.actamat.2021.117380
    [14] Thürmer D, Zhao S, Deluigi OR, et al. Exceptionally high spallation strength for a high-entropy alloy demonstrated by experiments and simulations. Journal of Alloys and Compounds, 2022, 895: 162567 doi: 10.1016/j.jallcom.2021.162567
    [15] Plimpton S. Fast Parallel Algorithms for Short-Range Molecular-Dynamics. Journal Of Computational Physics, 1995, 117(1): 1-19 doi: 10.1006/jcph.1995.1039
    [16] Stukowski A. Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering, 2010, 18(1): 015012 doi: 10.1088/0965-0393/18/1/015012
    [17] Stukowski A, Albe K. Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Modelling and Simulation in Materials Science and Engineering, 2010, 18(8): 085001 doi: 10.1088/0965-0393/18/8/085001
    [18] Hirel P. Atomsk: A tool for manipulating and converting atomic data files. Computer Physics Communications, 2015, 197: 212-219 doi: 10.1016/j.cpc.2015.07.012
    [19] 杜欣, 熊启林, 周留成等. 激光冲击下CoCrFeMnNi高熵合金微观塑性变形的分子动力学模拟. 力学学报, 2021, 53(12): 3331-3340 doi: 10.6052/0459-1879-21-468

    Du Xin, Xiong Qilin, Zhou Liucheng, et al. Microplastic deformation of CoCrFeMnNi high-entropy alloy under laser shock: a molecular dynamics simulation. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3331-3340 (in Chinese)) doi: 10.6052/0459-1879-21-468
    [20] Choi WM, Jo YH, Sohn SS, et al. Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: an atomistic simulation study. Npj Computational Materials, 2018, 4(1): 1-9 doi: 10.1038/s41524-017-0060-9
    [21] Qi YM, Chen XH, Feng ML. Molecular dynamics-based analysis of the effect of temperature and strain rate on deformation of nanocrystalline CoCrFeMnNi high-entropy alloy. Applied Physics A-Materials Science & Processing, 2020, 126(7): 529
    [22] Du X, Lu XC, Suang SY, et al. Cyclic plasticity of CoCrFeMnNi high-entropy alloy (HEA): A molecular dynamics simulation. International Journal of Applied Mechanics, 2021, 12(1): 2150006
    [23] Shuang SY, Lu SJ, Zhang B, et al. Effects of high entropy and twin boundary on the nanoindentation of CoCrNiFeMn high-entropy alloy: A molecular dynamics study. Computational Materials Science, 2021, 195(1): 110495
    [24] Qian LY, Bao HG, Li R, et al. Atomistic insights of a chemical complexity effect on the irradiation resistance of high entropy alloys. Materials Advances, 2022, 3(3): 1680-1686 doi: 10.1039/D1MA01184G
    [25] 李莹. 位错组织和形变孪晶对单晶铜层裂损伤的影响. [硕士论文]. 成都: 西南交通大学, 2001

    Li Ying. Effects of Dislocations Structure and Deformation Twin on Spallation Damage of Single Cyrstal Copper. [Master Thesis]. Chengdu: Southwest Jiaotong University, 2017 (in Chinese)
    [26] 王云天, 曾祥国, 陈华燕等. 延性金属层裂自由面速度曲线特征多尺度模拟研究. 冲击与爆炸, 2021, 41(8): 139-153

    Wang Tianyun, Zeng Xiangguo, Chen Yanhua, et al. Multi-scale simulation study on characteristics of free surface velocity curve in ductile metal spallation. Explosion And Shock Waves, 2021, 41(8): 139-153 (in Chinese)
    [27] 陈伟, 谢普初, 刘东升等. 晶粒尺寸对高纯铝板材层裂特性的影响. 冲击与爆炸, 2021, 41(4): 100-108

    Chen Wei, Xie Puchu, Liu Dongsheng, et al. Effects of grain size on the spall behaviors of high-purity aluminum plates. Explosion And Shock Waves, 2021, 41(4): 100-108 (in Chinese)
    [28] Hirel P. Atomsk: A tool for manipulating and converting atomic data files. Computer Physics Communications, 2015, 197: 212-219 doi: 10.1016/j.cpc.2015.07.012
    [29] Tsuzuki H, Branicio PS, Rino JP. Structural characterization of deformed crystals by analysis of common atomic neighborhood. Computer Physics Communications, 2007, 177(6): 518-523 doi: 10.1016/j.cpc.2007.05.018
    [30] Xiong QL, Shimada T, Kitamura T, et al. Selective excitation of two-wave structure depending on crystal orientation under shock compression. Science China, 2020, 63(11): 114611
    [31] Bringa EM, Caro A, Wang YM, et al. Ultrahigh Strength in Nanocrystalline Materials Under Shock Loading. Science, 2005, 309(16): 1838-1841
    [32] 吴凤超. 金属材料动态损伤与破坏的原子尺度模拟. [博士论文]. 合肥: 中国科学技术大学, 2001

    Wu Fengchao. Atomic-scale simulation of dynamic damage and fracture of metallic materials. [PhD Thesis]. Hefei: University of Science and Technology of Chian, 2020 (in Chinese)
    [33] Jiang ZJ, He JY, Wang HY, et al. Shock compression response of high entropy alloys. Materials Research Letters, 2016, 4(4): 226-232 doi: 10.1080/21663831.2016.1191554
    [34] Wang W, Zhang HS, Yang MX, et al. Shock and spall behaviors of a high specific strength steel: Effects of impact stress and microstructure. Journal of Applied Physics, 2017, 121: 135901 doi: 10.1063/1.4979346
    [35] Lv C, Wang GJ, Zhang XP, et al. Spalling modes and mechanisms of shocked nanocrystalline NiTi at different loadings and temperatures. Mechanics of Materials, 2021, 161: 104004 doi: 10.1016/j.mechmat.2021.104004
    [36] Yuan FP and Wu XL. Shock response of nanotwinned copper from large-scale molecular dynamics simulations. Physical Review B, 2012, 86: 134108 doi: 10.1103/PhysRevB.86.134108
    [37] Xiong QL, Kitamura T, Li ZH, et al. Transient phase transitions in single-crystal coppers under ultrafast lasers induced shock compression: A molecular dynamics study. Journal of Applied Physics, 2019, 125(19): 194302 doi: 10.1063/1.5088371
    [38] Wu D, Zhu YX, Huang MS, et al. Molecular dynamics study on shock-induced spallation and damage evolution in nanopolycrystalline Ta: Internal grain size effect vs external shock intensity effect. Journal of Applied Physics, 2021, 130: 205104 doi: 10.1063/5.0071129
  • 加载中
图(12)
计量
  • 文章访问数:  31
  • HTML全文浏览量:  4
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-31
  • 录用日期:  2022-08-06
  • 网络出版日期:  2022-08-05

目录

    /

    返回文章
    返回