SHOCK WAVE RESPONSE AND SPALL STRENGTH IN CoCrFeMnNi HIGH-ENTROPY ALLOY: A MOLECULAR DYNAMICS STUDY
-
摘要: 高熵合金未来有望应用于航空航天和深海探测等领域, 并且不可避免地会受到极端冲击载荷作用, 甚至会发生层裂. 本文采用分子动力学(MD)方法, 研究了CoCrFeMnNi单晶高熵合金冲击时的冲击波响应、层裂强度以及微观结构演化的取向相关性和冲击速度相关性. 模拟结果表明, 在沿[110]和[111]方向进行冲击时产生了弹塑性双波分离现象, 且随着冲击速度的增加呈现出先增强后减弱的变化趋势, 但在沿[100]方向冲击时未出现双波分离现象. 在冲击过程中, 大量无序结构产生且随冲击速度的增加而增加, 使得层裂强度随冲击速度的增加而减小. 此外, 层裂强度也具有取向相关性. 沿[100]方向冲击时产生了大量体心立方(BCC)中间相, 抑制了层错以及无序结构的产生, 使得[100]方向的层裂强度最高; 层裂初期微孔洞形核区域无序结构含量大小关系的转变, 使得[111]方向的层裂强度在冲击速度较低时(Up≤0.9 km/s)大于[110]方向, 而在冲击速度较大时(Up≥1.2 km/s)略小于[111]方向. 研究成果有望为 CoCrFeMnNi高熵合金在极端冲击条件下的应用提供理论支撑和数据积累.Abstract: High-entropy alloys are expected to be used in aerospace, deep-sea exploration and other fields in the future, and will inevitably be affected by extreme shock loading, even will occur spall fracture. In this work, the molecular dynamics (MD) method is used to study the orientation and shock velocity dependence of the shock wave response, spall strength and microstructure evolution of single-crystal CoCrFeMnNi high-entropy alloys. The simulation results show that the elastoplastic two-wave separation phenomenon occurs when the shocking along the [110] and [111] directions and shows a trend of first strengthening and then weakening with the increase of the shock velocity. However, there is no two-wave separation phenomenon when the shocking along the [100] direction. During the shocking process, a large number of disordered structures are generated and increase with the increase of the shock velocity, which makes the spall strength decreases with the increase of shock velocity. In addition, the spall strength also exhibits orientation dependence. A large number of body-centered cubic (BCC) intermediate phases are generated when the shocking along the [100] direction, which inhibits the generation of stacking faults and disordered structures, making the highest spall strength in the [100] direction; The transformation of the relationship of the content of disordered structure in the nucleation area of microvoids at the early stage of spallation, making the spall strength in the [111] direction is higher than that in the [110] direction when the shocking velocity is low (Up≤0.9 km/s), and slightly lower than that in the [110] direction when the shocking velocity is large (Up ≥1.2 km/s). The research results are expected to provide theoretical support and data accumulation for the application of CoCrFeMnNi high-entropy alloys under extreme shock conditions.
-
图 5 采用三种方法得到沿[100], [110]和[111]方向冲击时层裂强度与冲击速度的关系: (a) [100]方向; (b) [110]方向; (c) [111]方向
Figure 5. Three methods are used to obtain the relationship between spall strength and shock velocity when the shocking along the [100], [110] and [111] directions: (a) [100] direction; (b) [110] direction; (c) [111] direction
图 8 采用CNA方法分析以0.9 km/s 和1.5 km/s的冲击速度沿[100], [110]和[111]方向冲击时的微观组织演化: (a)-(b)以0.9和1.5 km/s的冲击速度沿[100]方向冲击; (c)-(d)以0.9 km/s和1.5 km/s的冲击速度沿[110]方向冲击; (e)-(f)以0.9 km/s和1.5 km/s的冲击速度沿[111]方向冲击
Figure 8. Microstructure evolutions by CNA at the shock velocities of 0.9 km/s and 1.5 km/s along the [100], [110] and [111] directions: (a)-(b) 0.9 km/s and 1.5 km/s shock velocities along [100] direction; (c)-(d) 0.9 and 1.5 km/s shock velocities along [110] direction; (e)-( f) 0.9 km/s and 1.5 km/s shock velocities along [111] direction
-
[1] Qiu J, Jin T, Xiao GS, et al. Effects of pre-compression on the hardness of CoCrFeNiMn high entropy alloy based an asymmetrical yield criterion. Journal of Alloys and Compounds, 2019, 802: 93-102 doi: 10.1016/j.jallcom.2019.06.159 [2] 吕昭平, 雷智锋, 黄海龙等. 高熵合金的变形行为及强韧化. 金属学报, 2019, 811: 152000-359 doi: 10.1016/j.jallcom.2019.152000Klimova MV, Semenyuk AO, Shaysultanov DG, et al. Effect of carbon on cryogenic tensile behavior of CoCrFeMnNi-type high entropy alloys. Journal of Alloys and Compounds, 2019, 811: 152000-359 doi: 10.1016/j.jallcom.2019.152000 [3] 吕昭平, 雷智锋, 黄海龙等. 高熵合金的变形行为及强韧化. 金属学报, 2018, 54(3): 1553-1566Lü Zhaoping, Lei Zhifeng, Huang Hailong, et al. Deformation behavior and toughening ofhigh-entropy alloys. Acta Metallurgica Sinica, 2018, 54(3): 1553-1566 (in Chinese)) [4] 李建国, 黄瑞瑞, 张倩等. 高熵合金的力学性能及变形行为研究进展. 力学学报, 2020, 52(2): 333-359Li Jianguo, Huang Ruirui, Zhang Qian, et al. Mechanical properties and behaviors of high entropy alloys. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 333-359 (in Chinese) [5] Su ZX, Shi T, Yang JX, et al. The effect of interstitial carbon atoms on defect evolution in high entropy alloys under helium irradiation. Acta Materialia, 2022, 233: 117955 doi: 10.1016/j.actamat.2022.117955 [6] Cantor B, Chang IT, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering A, 2004, 375-377: 213-218 doi: 10.1016/j.msea.2003.10.257 [7] Bertin N, Sills RB, Cai W. Frontiers in the Simulation of Dislocations. Annual Review of Materials Research, 2020, 50(1): 437-464 doi: 10.1146/annurev-matsci-091819-015500 [8] Jiang DD, Shao JL, Wu B, et al. Sudden change of spall strength induced by shock defects based on atomistic simulation of single crystal aluminum. Scripta Materialia, 2022, 210: 114474 doi: 10.1016/j.scriptamat.2021.114474 [9] Li WH, Hahn EN, Branicio P. S, et al. Defect reversibility regulates dynamic tensile strength in silicon carbide at high strain rates. Scripta Materialia, 2022, 213: 114593 [10] Jian WR, Xie ZC, Xu SZ, et al. Shock-induced amorphization in medium entropy alloy CoCrNi. Scripta Materialia, 2022, 209: 114379 doi: 10.1016/j.scriptamat.2021.114379 [11] Cekil HC, Ozdemir M. The behaviour of Boron Carbide under shock compression conditions: MD simulation results. Computational Materials Science, 2022, 201: 110872 doi: 10.1016/j.commatsci.2021.110872 [12] Zhu Y, Hu J, Huang S, et al. Molecular dynamics simulation on spallation of [111] Cu/Ni nano-multilayers: Voids evolution under different shock pulse duration. Computational Materials Science, 2022, 202: 110923 doi: 10.1016/j.commatsci.2021.110923 [13] Xie ZC, Jian WR, Xu SZ, et al. Role of local chemical fluctuations in the shock dynamics of medium entropy alloy CoCrNi. Acta Materialia, 2021, 221: 117380 doi: 10.1016/j.actamat.2021.117380 [14] Thürmer D, Zhao S, Deluigi OR, et al. Exceptionally high spallation strength for a high-entropy alloy demonstrated by experiments and simulations. Journal of Alloys and Compounds, 2022, 895: 162567 doi: 10.1016/j.jallcom.2021.162567 [15] Plimpton S. Fast Parallel Algorithms for Short-Range Molecular-Dynamics. Journal Of Computational Physics, 1995, 117(1): 1-19 doi: 10.1006/jcph.1995.1039 [16] Stukowski A. Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering, 2010, 18(1): 015012 doi: 10.1088/0965-0393/18/1/015012 [17] Stukowski A, Albe K. Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Modelling and Simulation in Materials Science and Engineering, 2010, 18(8): 085001 doi: 10.1088/0965-0393/18/8/085001 [18] Hirel P. Atomsk: A tool for manipulating and converting atomic data files. Computer Physics Communications, 2015, 197: 212-219 doi: 10.1016/j.cpc.2015.07.012 [19] 杜欣, 熊启林, 周留成等. 激光冲击下CoCrFeMnNi高熵合金微观塑性变形的分子动力学模拟. 力学学报, 2021, 53(12): 3331-3340 doi: 10.6052/0459-1879-21-468Du Xin, Xiong Qilin, Zhou Liucheng, et al. Microplastic deformation of CoCrFeMnNi high-entropy alloy under laser shock: a molecular dynamics simulation. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3331-3340 (in Chinese)) doi: 10.6052/0459-1879-21-468 [20] Choi WM, Jo YH, Sohn SS, et al. Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: an atomistic simulation study. Npj Computational Materials, 2018, 4(1): 1-9 doi: 10.1038/s41524-017-0060-9 [21] Qi YM, Chen XH, Feng ML. Molecular dynamics-based analysis of the effect of temperature and strain rate on deformation of nanocrystalline CoCrFeMnNi high-entropy alloy. Applied Physics A-Materials Science & Processing, 2020, 126(7): 529 [22] Du X, Lu XC, Suang SY, et al. Cyclic plasticity of CoCrFeMnNi high-entropy alloy (HEA): A molecular dynamics simulation. International Journal of Applied Mechanics, 2021, 12(1): 2150006 [23] Shuang SY, Lu SJ, Zhang B, et al. Effects of high entropy and twin boundary on the nanoindentation of CoCrNiFeMn high-entropy alloy: A molecular dynamics study. Computational Materials Science, 2021, 195(1): 110495 [24] Qian LY, Bao HG, Li R, et al. Atomistic insights of a chemical complexity effect on the irradiation resistance of high entropy alloys. Materials Advances, 2022, 3(3): 1680-1686 doi: 10.1039/D1MA01184G [25] 李莹. 位错组织和形变孪晶对单晶铜层裂损伤的影响. [硕士论文]. 成都: 西南交通大学, 2001Li Ying. Effects of Dislocations Structure and Deformation Twin on Spallation Damage of Single Cyrstal Copper. [Master Thesis]. Chengdu: Southwest Jiaotong University, 2017 (in Chinese) [26] 王云天, 曾祥国, 陈华燕等. 延性金属层裂自由面速度曲线特征多尺度模拟研究. 冲击与爆炸, 2021, 41(8): 139-153Wang Tianyun, Zeng Xiangguo, Chen Yanhua, et al. Multi-scale simulation study on characteristics of free surface velocity curve in ductile metal spallation. Explosion And Shock Waves, 2021, 41(8): 139-153 (in Chinese) [27] 陈伟, 谢普初, 刘东升等. 晶粒尺寸对高纯铝板材层裂特性的影响. 冲击与爆炸, 2021, 41(4): 100-108Chen Wei, Xie Puchu, Liu Dongsheng, et al. Effects of grain size on the spall behaviors of high-purity aluminum plates. Explosion And Shock Waves, 2021, 41(4): 100-108 (in Chinese) [28] Hirel P. Atomsk: A tool for manipulating and converting atomic data files. Computer Physics Communications, 2015, 197: 212-219 doi: 10.1016/j.cpc.2015.07.012 [29] Tsuzuki H, Branicio PS, Rino JP. Structural characterization of deformed crystals by analysis of common atomic neighborhood. Computer Physics Communications, 2007, 177(6): 518-523 doi: 10.1016/j.cpc.2007.05.018 [30] Xiong QL, Shimada T, Kitamura T, et al. Selective excitation of two-wave structure depending on crystal orientation under shock compression. Science China, 2020, 63(11): 114611 [31] Bringa EM, Caro A, Wang YM, et al. Ultrahigh Strength in Nanocrystalline Materials Under Shock Loading. Science, 2005, 309(16): 1838-1841 [32] 吴凤超. 金属材料动态损伤与破坏的原子尺度模拟. [博士论文]. 合肥: 中国科学技术大学, 2001Wu Fengchao. Atomic-scale simulation of dynamic damage and fracture of metallic materials. [PhD Thesis]. Hefei: University of Science and Technology of Chian, 2020 (in Chinese) [33] Jiang ZJ, He JY, Wang HY, et al. Shock compression response of high entropy alloys. Materials Research Letters, 2016, 4(4): 226-232 doi: 10.1080/21663831.2016.1191554 [34] Wang W, Zhang HS, Yang MX, et al. Shock and spall behaviors of a high specific strength steel: Effects of impact stress and microstructure. Journal of Applied Physics, 2017, 121: 135901 doi: 10.1063/1.4979346 [35] Lv C, Wang GJ, Zhang XP, et al. Spalling modes and mechanisms of shocked nanocrystalline NiTi at different loadings and temperatures. Mechanics of Materials, 2021, 161: 104004 doi: 10.1016/j.mechmat.2021.104004 [36] Yuan FP and Wu XL. Shock response of nanotwinned copper from large-scale molecular dynamics simulations. Physical Review B, 2012, 86: 134108 doi: 10.1103/PhysRevB.86.134108 [37] Xiong QL, Kitamura T, Li ZH, et al. Transient phase transitions in single-crystal coppers under ultrafast lasers induced shock compression: A molecular dynamics study. Journal of Applied Physics, 2019, 125(19): 194302 doi: 10.1063/1.5088371 [38] Wu D, Zhu YX, Huang MS, et al. Molecular dynamics study on shock-induced spallation and damage evolution in nanopolycrystalline Ta: Internal grain size effect vs external shock intensity effect. Journal of Applied Physics, 2021, 130: 205104 doi: 10.1063/5.0071129 -