EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

翼型颤振压电俘能器的输出特性研究

田海港 单小彪 张居彬 隋广东 谢涛

田海港, 单小彪, 张居彬, 隋广东, 谢涛. 翼型颤振压电俘能器的输出特性研究. 力学学报, 待出版 doi: 10.6052/0459-1879-377
引用本文: 田海港, 单小彪, 张居彬, 隋广东, 谢涛. 翼型颤振压电俘能器的输出特性研究. 力学学报, 待出版 doi: 10.6052/0459-1879-377
Tian Haigang, Shan Xiaobiao, Zhang Jubin, Sui Guangdong, Xie Tao. Output characteristics investigation of airfoil-based flutter piezoelectric energy harvester. Chinese Journal of Theoretical and Applied Mechanics, in press doi: 10.6052/0459-1879-377
Citation: Tian Haigang, Shan Xiaobiao, Zhang Jubin, Sui Guangdong, Xie Tao. Output characteristics investigation of airfoil-based flutter piezoelectric energy harvester. Chinese Journal of Theoretical and Applied Mechanics, in press doi: 10.6052/0459-1879-377

翼型颤振压电俘能器的输出特性研究

doi: 10.6052/0459-1879-377
基金项目: 国家自然科学基金项目(51875116)资助
详细信息
    作者简介:

    单小彪, 副教授, 主要研究方向: 俘能技术, 抑振技术. E-mail: shanxiaobiao@hit.edu.cn

  • 中图分类号: O322

OUTPUT CHARACTERISTICS INVESTIGATION OF AIRFOIL-BASED FLUTTER PIEZOELECTRIC ENERGY HARVESTER

  • 摘要: 压电俘能器能够为自然界中低功率的微机电系统持续供能. 为了模拟机翼的沉浮−俯仰二自由度运动和有效俘获气动弹性振动能量, 本文提出一种新颖的翼型颤振压电俘能器. 基于非定常气动力模型, 推导翼型颤振压电俘能器流-固−电耦合场的数学模型. 建立有限元模型, 模拟机翼的沉浮−俯仰二自由度运动, 获得机翼附近的涡旋脱落和流场特性. 搭建风洞实验系统, 制作压电俘能器样机. 利用实验验证理论和仿真模型的正确性, 仿真分析压电俘能器结构参数对其气动弹性振动响应和俘获性能的影响. 结果表明: 理论分析、仿真模拟和实验研究获得的输出电压具有较好的一致性, 验证建立数学和仿真模型的正确性. 仿真分析获得机翼附近的压力场变化云图, 表明交替的压力差驱动机翼发生二自由度沉浮−俯仰运动. 当风速超过颤振起始速度时, 压电俘能器发生颤振, 并表现为极限环振荡. 当偏心距为0.3和风速为16 m/s时, 可获得最大输出电压为17.88 V和输出功率为1.278 mW. 功率密度为7.99 mW/cm3, 相比较于其它压电俘能器, 能实现优越的俘获性能. 研究结果对设计更高效的翼型颤振压电俘能器提供重要的指导意义.

     

  • 图  1  二自由度翼型颤振压电俘能器模型

    Figure  1.  Model of two degrees of freedom airfoil-based flutter piezoelectric energy harvester

    图  2  压电俘能器系统的原理图

    Figure  2.  Schematic diagram of piezoelectric harvester system

    图  3  压电俘能器的有限元模型

    Figure  3.  Finite element model of piezoelectric harvester

    图  4  风洞实验系统

    Figure  4.  Wind tunnel experimental system

    图  5  实验、理论和数值获得的输出电压随风速的变化曲线

    Figure  5.  Variation of output voltage with airflow velocity obtained experimentally, theoretically and numerically

    图  6  机翼附近压力场变化云图

    Figure  6.  Variation of pressure field around the airfoil

    图  7  在15.2 m/s时沉浮和俯仰运动的时间变化曲线、功率谱密度和相位图

    Figure  7.  Time history, power spectrum density and phase portraits in plunge and pitch at 15.2 m/s

    图  8  沉浮幅值, 俯仰幅值, 输出电压和输出功率随偏心距和风速的变化曲线

    Figure  8.  Variation of plunge amplitude, pitch amplitude, output voltage and output power with eccentricity and airflow velocity

    表  1  压电俘能器的结构参数

    Table  1.   Structural parameters of piezoelectric harvester

    ParametersValues
    Airfoil span, s/m0.1
    Eccentricity, xα0.3262
    Total mass, mT/kg0.635
    Airfoil mass, mf/kg0.38
    Structural stiffness in plunge, kh1/(N·m−1)360
    Structural stiffness in pitch, kα1/(N·m)4.5
    Damping coefficient in plunge, ch/(kg·s−1)0.056
    Damping coefficient in pitch, cα/(kg·m2·s−1)0.12
    下载: 导出CSV
  • [1] Yang Z, Zhou S, Zu J, et al. High-performance piezoelectric energy harvesters and their applications. Joule, 2018, 2(4): 642-647 doi: 10.1016/j.joule.2018.03.011
    [2] 何燕丽, 赵翔. 曲梁压电俘能器强迫振动的格林函数解. 力学学报, 2019, 51(4): 1170-1179 (He Yanli, Zhao Xiang. Closed-form solutions for forced vibrations of curved piezoelectric energy harvesters by means of green’s functions. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1170-1179 (in Chinese)
    [3] 王淑云, 朱雅娜, 阚君武等. 旋磁激励式预弯梁压电俘能器建模仿真与试验. 机械工程学报, 2020, 56(14): 224-230 (Wang Shuyun, Zhu Yana, Kan Junwu, et al. Prebending-cantilever piezo-harvester excited by rotary magnet. Journal of Mechanical Engineering, 2020, 56(14): 224-230 (in Chinese) doi: 10.3901/JME.2020.14.224
    [4] 宋汝君, 单小彪, 杨先海等. 基于压电俘能器的流体能量俘获技术研究现状. 振动与冲击, 2019, 38(17): 244-250+275 (Song Rujun, Shan Xiaobiao, Yang Xianhai, et al. A review of fluid energy capture technology based on piezoelectric energy harvesters. Journal of Vibration and Shock, 2019, 38(17): 244-250+275 (in Chinese)
    [5] 樊康旗, 刘朝辉, 王连松等. 从人体行走中收集能量的鞋上压电俘能器. 光学精密工程, 2017, 25(5): 1272-1280 (Fan Kangqi, Liu Zhaohui, Wang Liansong, et al. Shoe-mounted piezoelectric energy harvester for collecting energy from human walking. Optics and Precision Engineering, 2017, 25(5): 1272-1280 (in Chinese) doi: 10.3788/OPE.20172505.1272
    [6] Fan K, Liu S, Liu H, et al. Scavenging energy from ultra-low frequency mechanical excitations through a bi-directional hybrid energy harvester. Applied Energy, 2018, 216: 8-20 doi: 10.1016/j.apenergy.2018.02.086
    [7] Graham A, Yuta D, Katelyn D, et al. Frequency domain analysis of droplet-based electrostatic transducers. Smart Materials and Structures, 2018, 27(7): 074007 doi: 10.1088/1361-665X/aac134
    [8] Fan F, Tang W, Wang Z. Flexible nanogenerators for energy harvesting and self-powered electronics. Advanced Materials, 2016, 28(22): 4283-4305 doi: 10.1002/adma.201504299
    [9] Zhao L, Chen K, Yang F, et al. The novel transistor and photodetector of monolayer mos2 based on surface-ionic-gate modulation powered by a triboelectric nanogenerator. Nano Energy, 2019, 62: 38-45 doi: 10.1016/j.nanoen.2019.05.012
    [10] 曹东兴, 马鸿博, 张伟. 附磁压电悬臂梁流致振动俘能特性分析. 力学学报, 2019, 51(4): 1148-1155 (Cao Dongxing, Ma Hongbo, Zhang Wei. Energy harvesting analysis of a piezoelectric cantilever beam with magnets for flow-induced vibration. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1148-1155 (in Chinese)
    [11] 王淑云, 沈亚林, 阚君武等. 刚柔复合梁压电风能采集器的试验测试与分析. 振动与冲击, 2016, 35(18): 23-27 (Wang Shuyun, Shen Yalin, Kan Junwu, et al. Test and analysis of piezoelectric wind energy harvester based on rigid-flexible composite beam. Journal of Vibration and Shock, 2016, 35(18): 23-27 (in Chinese)
    [12] Arionfard H, Nishi Y. Experimental investigation on the performance of a double-cylinder flow-induced vibration (FIV) energy converter. Renewable Energy, 2019, 134: 267-275 doi: 10.1016/j.renene.2018.11.022
    [13] As si, Gustavo RS. Wake-induced vibration of tandem cylinders of different diameters. Journal of Fluids and Structures, 2014, 50: 329-339 doi: 10.1016/j.jfluidstructs.2014.07.001
    [14] Pigolotti L, Mannini C, Bartoli G, et al. Critical and post-critical behaviour of two-degree-of-freedom flutter-based generators. Journal of Sound and Vibration, 2017, 404: 116-140 doi: 10.1016/j.jsv.2017.05.024
    [15] 李魁, 杨智春, 谷迎松等. 变势能阱双稳态气动弹性能量收集的性能增强研究. 航空学报, 2020, 41(9): 136-147 (Li Kui, Yang Zhichun, Gu Yingsong, et al. Performance enhancement of variable-potential-well bi-stable aeroelasticity energy harvesting. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 136-147 (in Chinese)
    [16] Wang J, Tang L, Zhao L, et al. Efficiency investigation on energy harvesting from airflows in hvac system based on galloping of isosceles triangle sectioned bluff bodies. Energy, 2019, 172: 1066-1078 doi: 10.1016/j.energy.2019.02.002
    [17] Wang J, Zhou S, Zhang Z, et al. High-performance piezoelectric wind energy harvester with y-shaped attachments. Energy Conversion and Management, 2019, 181: 645-652 doi: 10.1016/j.enconman.2018.12.034
    [18] Wang Y, Inman DJ. Simultaneous energy harvesting and gust alleviation for a multifunctional composite wing spar using reduced energy control via piezoceramics. Journal of Composite Materials, 2013, 47(1): 125-146 doi: 10.1177/0021998312448677
    [19] Abdelkefi A, Hajj MR. Performance enhancement of wing-based piezoaeroelastic energy harvesting through freeplay nonlinearity. Theoretical and Applied Mechanics Letters, 2013, 3(4): 041001 doi: 10.1063/2.1304101
    [20] Abdelkefi A, Nayfeh AH, Hajj MR. Enhancement of power harvesting from piezoaeroelastic systems. Nonlinear Dynamics, 2012, 68(4): 531-541 doi: 10.1007/s11071-011-0234-9
    [21] Kirschmeier B, Bryant M. Experimental investigation of wake-induced aeroelastic limit cycle oscillations in tandem wings. Journal of Fluids and Structures, 2018, 81: 309-324 doi: 10.1016/j.jfluidstructs.2018.04.015
    [22] Wu Y, Li D, Xiang J, et al. A modified airfoil-based piezoaeroelastic energy harvester with double plunge degrees of freedom. Theoretical and Applied Mechanics Letters, 2016, 6(5): 244-247 doi: 10.1016/j.taml.2016.08.009
    [23] Li K, Yang Z, Gu Y, et al. Nonlinear magnetic-coupled flutter-based aeroelastic energy harvester: Modeling, simulation and experimental verification. Smart Materials and Structures, 2019, 28(1): 015020 doi: 10.1088/1361-665X/aaede3
    [24] Abdelkefi A, Vasconcellos R, Marques FD, et al. Modeling and identification of freeplay nonlinearity. Journal of Sound and Vibration, 2012, 331(8): 1898-1907 doi: 10.1016/j.jsv.2011.12.021
    [25] Hafezi M, Mirdamadi HR. A novel design for an adaptive aeroelastic energy harvesting system: Flutter and power analysis. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 41(1): 9
    [26] Li D, Guo S, Xiang J. Aeroelastic dynamic response and control of an airfoil section with control surface nonlinearities. Journal of Sound and Vibration, 2010, 329(22): 4756-4771 doi: 10.1016/j.jsv.2010.06.006
    [27] Abdelkefi A, Nayfeh AH, Hajj MR. Design of piezoaeroelastic energy harvesters. Nonlinear Dynamics, 2012, 68(4): 519-530 doi: 10.1007/s11071-011-0233-x
    [28] Wu Y, Li D, Xiang J. Dimensionless modeling and nonlinear analysis of a coupled pitch–plunge–leadlag airfoil-based piezoaeroelastic energy harvesting system. Nonlinear Dynamics, 2018, 92(2): 153-167 doi: 10.1007/s11071-017-3954-7
    [29] De Marqui C, Erturk A. Electroaeroelastic analysis of airfoil-based wind energy harvesting using piezoelectric transduction and electromagnetic induction. Journal of Intelligent Material Systems and Structures, 2012, 24(7): 846-854
    [30] Li D, Jinwu X. Chaotic motions of an airfoil with cubic nonlinearity in subsonic flow. Journal of Aircraft, 2008, 45(4): 1457-1460 doi: 10.2514/1.32691
    [31] Lu K, Xie YH, Zhang D, et al. Numerical investigations into the asymmetric effects on the aerodynamic response of a pitching airfoil. Journal of Fluids and Structures, 2013, 39: 76-86 doi: 10.1016/j.jfluidstructs.2013.02.001
    [32] Chen Y, Nan J, Wu J. Wake effect on a semi-active flapping foil based energy harvester by a rotating foil. Computers and Fluids, 2018, 160: 51-63 doi: 10.1016/j.compfluid.2017.10.024
    [33] Tian H, Shan X, Cao H, et al. A method for investigating aerodynamic load models of piezoaeroelastic energy harvester. Journal of Sound and Vibration, 2021, 502: 116084 doi: 10.1016/j.jsv.2021.116084
    [34] Wu Y, Li D, Xiang J, et al. Piezoaeroelastic energy harvesting based on an airfoil with double plunge degrees of freedom: Modeling and numerical analysis. Journal of Fluids and Structures, 2017, 74: 111-129 doi: 10.1016/j.jfluidstructs.2017.06.009
    [35] Abdelkefi A, Vasconcellos R, Nayfeh AH, et al. An analytical and experimental investigation into limit-cycle oscillations of an aeroelastic system. Nonlinear Dynamics, 2013, 71(1): 159-173
    [36] Bryant M, Garcia E. Modeling and testing of a novel aeroelastic flutter energy harvester. Journal of Vibration and Acoustics, 2011, 133(1): 011010 doi: 10.1115/1.4002788
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  7
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-09-10

目录

    /

    返回文章
    返回