EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TSTO马赫7安全级间分离问题的数值研究

王粤 汪运鹏 薛晓鹏 姜宗林

王粤, 汪运鹏, 薛晓鹏, 姜宗林. TSTO马赫7安全级间分离问题的数值研究. 力学学报, 待出版 doi: 10.6052/0459-1879-21-423
引用本文: 王粤, 汪运鹏, 薛晓鹏, 姜宗林. TSTO马赫7安全级间分离问题的数值研究. 力学学报, 待出版 doi: 10.6052/0459-1879-21-423
Wang Yue, Wang Yunpeng, Xue Xiaopeng, Jiang Zonglin. Numerical investigation on safe stage separation problem of a tsto model at mach 7. Chinese Journal of Theoretical and Applied Mechanics, in press doi: 10.6052/0459-1879-21-423
Citation: Wang Yue, Wang Yunpeng, Xue Xiaopeng, Jiang Zonglin. Numerical investigation on safe stage separation problem of a tsto model at mach 7. Chinese Journal of Theoretical and Applied Mechanics, in press doi: 10.6052/0459-1879-21-423

TSTO马赫7安全级间分离问题的数值研究

doi: 10.6052/0459-1879-21-423
基金项目: 国家自然科学基金项目(11672357)资助
详细信息
    作者简介:

    汪运鹏, 副研究员, 主要研究方向: 激波风洞天平测力试验与风洞天平技术. E-mail: wangyunpeng@imech.ac.cn

  • 中图分类号: O354.4

NUMERICAL INVESTIGATION ON SAFE STAGE SEPARATION PROBLEM OF A TSTO MODEL AT MACH 7

  • 摘要: 两级入轨(Two Stage To Orbit, TSTO)飞行器在高超声速来流条件下级间分离, 会在两级之间产生复杂的非定常气动干扰, 直接增加TSTO级间分离失败风险. 级间分离过程中的这种复杂气动干扰伴随着两级之间的激波与边界层干扰、马蹄涡、激波与尾流干扰的综合作用. 本研究将TSTO助推级和轨道级的复杂模型简化为两个三维楔, 采用重叠动网格技术, 耦合求解流动控制方程及六自由度刚体动力学方程组对级间分离过程开展模拟分析, 探究级间分离流动特性及其物理机制. 在数值分析过程中, 针对不同抬升角度下的TSTO三维流场进行了CFD(computational fluid dynamics)静态和动态数值模拟, 给出了不同抬升角度下的干扰流场流动规律和特性, 结合流场结构和壁面压力分布以及分离流动模式阐明了两级之间这种气动干扰对TSTO气动分离的影响机制, 并探讨了轨道级抬升角对TSTO安全分离的影响. 结果表明两级间的气动干扰强度随着轨道级抬升角的增大而增强, 并且在动态分离过程中随着两级间隙的增加而减弱; 在轨道级释放前两级间气动干扰和三维分离拓扑结构随着抬升角的增大变得更加复杂, 流动分离区域增大, 临界点数量增加; 在级间分离过程中, 两级气动特性变化幅度随着轨道级抬升角增大而增大, 分离时间则随之减小. 另外, 当轨道级抬升角度在6 ~ 8°时可实现该TSTO更加安全可靠的分离.

     

  • 图  1  TSTO计算模型

    Figure  1.  TSTO computational model

    图  2  计算网格

    Figure  2.  Computational grid

    图  3  网格无关性验证

    Figure  3.  Grid independency verification

    图  4  激波/层流边界层干扰

    Figure  4.  Shock wave/laminar boundary layer interaction

    图  5  机翼/外挂物投放分离

    Figure  5.  Wing-poly-store separation case

    图  6  静态和动态模拟中TSTO壁面空间平均压力随轨道级抬升角度变化曲线

    Figure  6.  TSTO spatial average walls pressure change with the orbiter’s lifting angle (β) in static and dynamic simulation

    图  7  不同β下TSTO典型流场结构(左)(包含两级壁面压力云图、对称面数值纹影图、间隙内数值纹影图及压力云图以及用马赫数染色的流线图)及其对称面上壁面压力分布曲线(右)(续)

    Figure  7.  Typical flow structures of TSTO (left) (pressure contours of TSTO, numerical schlieren on symmetry plane, numerical schlieren and pressure contours of flow in clearance, and streamlines colored by Mach number contours ) and wall pressure distribution on symmetry plane (right) in different lifting angle (β) cases (continued)

    7  不同β下TSTO典型流场结构(左)(包含两级壁面压力云图、对称面数值纹影图、间隙内数值纹影图及压力云图以及用马赫数染色的流线图)及其对称面上壁面压力分布曲线(右)

    7.  Typical flow structures of TSTO (left) (pressure contours of TSTO, numerical schlieren on symmetry plane, numerical schlieren and pressure contours of flow in clearance, and streamlines colored by Mach number contours ) and wall pressure distribution on symmetry plane (right) in different lifting angle (β) cases

    图  8  不同β下TSTO 对称面数值纹影与壁面压力空间分布及其流动拓扑结构

    Figure  8.  Numerical schlieren and wall pressure distribution of TSTO, as well as its flow topology structure at different orbiter’s lifting angle (β) cases

    图  9  静态和动态模拟中TSTO气动特性随轨道级抬升角度变化曲线

    Figure  9.  TSTO aerodynamic characteristics change with the orbiter’s lifting angle (β) in static and dynamic simulation

    图  10  级间分离过程中轨道级的位移以及俯仰角变化

    Figure  10.  The displacement and pitching angle of the orbiter during stage separation

    图  11  两级飞行器俯仰力矩系数在分离过程中随时间变化曲线(β = 8°)

    Figure  11.  Time history of the pitching moment coefficient during stage separation at the case of β = 8°

    图  12  β = 8º情况下TSTO级间分离过程中不同时刻流场(左: 流动结构, 右: 对称面马赫数云图和数值纹影图)(续)

    Figure  12.  Flow-fields of different instants during stage separation at the case of β = 8 deg (left: flow structure, right: Mach number contous and numerical schlieren on symmtery plane) (continued)

    12  β = 8º情况下TSTO级间分离过程中不同时刻流场(左: 流动结构, 右: 对称面马赫数云图和数值纹影图)

    12.  Flow-fields of different instants during stage separation at the case of β = 8 deg (left: flow structure, right: Mach number contous and numerical schlieren on symmtery plane)

    图  13  β = 8º情况下TSTO级间分离过程中不同时刻的对称面数值纹影图与助推级上壁面压力空间分布及其流动拓扑结构(续)

    Figure  13.  Numerical schlieren and wall pressure distribution of TSTO, as well as its flow topology structure of different instants during stage separation at the case of β = 8º (continued)

    13  β = 8º情况下TSTO级间分离过程中不同时刻的对称面数值纹影图与助推级上壁面压力空间分布及其流动拓扑结构

    13.  Numerical schlieren and wall pressure distribution of TSTO, as well as its flow topology structure of different instants during stage separation at the case of β = 8º

    图  14  TSTO级间分离气动特性(续)

    Figure  14.  Aerodynamic characteristics of TSTO during stage separation (continued)

    14  TSTO级间分离气动特性

    14.  Aerodynamic characteristics of TSTO during stage separation

      参数列表

    Ma=马赫数dt=计算时间步长, s
    Re=雷诺数y+ =无量纲壁面距离
    α=攻角, deg (°)Cp=压力系数
    β=轨道级抬升角, deg (°)Cf=摩擦力系数
    h=两级初始间距, mmS=鞍点(Saddle point)
    m=质量, kgNa=结点(Node)
    l=长度, mm(S)=分离线(Separation line)
    w=宽度, mm(A)=再附线(Attachment line)
    d=高度, mmΔx=轨道级x方向位移, m
    $\dot \beta $=旋转角速度, deg·s−1Δy=轨道级y方向位移, m
    Ixx=x轴转动惯量, kg·m2t=时间, s
    Iyy=y轴转动惯量, kg·m2$t'$=无量纲时间, $t' = t \cdot {{{U_\infty }} \mathord{\left/ {\vphantom {{{U_\infty }} {{l_b}}}} \right. } {{l_b}}}$
    Izz=z轴转动惯量, kg·m2CD=阻力系数, ${C_D} = {D \mathord{\left/ {\vphantom {D {\left( {0.5{\rho _\infty }{U_\infty }^2 wd} \right)}}} \right. } {\left( {0.5{\rho _\infty }{U_\infty }^2 wd} \right)}}$
    U=自由来流速度, m·s−1CL=升力系数, ${C_L} = {L \mathord{\left/ {\vphantom {L {\left( {0.5{\rho _\infty }{U_\infty }^2 lw} \right)}}} \right. } {\left( {0.5{\rho _\infty }{U_\infty }^2 lw} \right)}}$
    ρ=密度, kg·m−3CM=俯仰力矩系数, ${C_M} = {{{M_{CG}}} \mathord{\left/ {\vphantom {{{M_{CG}}} {\left( {0.5{\rho _\infty }{U_\infty }^2{l^2}w} \right)}}} \right. } {\left( {0.5{\rho _\infty }{U_\infty }^2{l^2}w} \right)}}$
    p=压强, Pa下标
    T=温度, K=自由来流
    μ=动力粘度, kg·m−1· s−1o=轨道级(orbiter)
    γ=比热比, γ= 1.4b=助推级(booster)
    下载: 导出CSV

    表  1  算例设置

    Table  1.   Simulation type of each case

    β/degSimulation type
    Static modeDynamic mode
    0
    2
    4 √ (stage separation)
    6 √ (stage separation)
    8 √ (stage separation)
    10 √ (stage separation)
    12 √ (stage separation)
    0 ~ 12 √ (orbiter rotation)
    下载: 导出CSV

    表  2  自由来流条件

    Table  2.   Freestream conditions employed in the present simulations

    Map/PaT/Kμ/(kg·m−1·s−1)Re/(1·m−1)γ
    7 392 228 1.48 × 10−5 8.60 × 105 1.4
    下载: 导出CSV
  • [1] 邓小刚, 张涵信. 数值研究平板方舵激波-湍流边界层干扰. 力学学报, 1993, 25(6): 651-657 (Deng Xiaogang, Zhang Hanxin. Numerical study of shock wave and turbulent boundary layer interaction induced by flat-faced blunt fin. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(6): 651-657 (in Chinese)
    [2] 童福林, 段俊亦, 周桂宇等. 激波/湍流边界层干扰压力脉动特性数值研究. 力学学报, 2021, 53(7): 1-13 (Tong Fulin, Duan Junyi, Zhou Guiyu, et al. Statistical characteristics of pressure fluctuation in shock wave and turbulent boundary layer interaction. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1-13 (in Chinese)
    [3] 俞鸿儒, 李仲发. 圆柱形突出物诱导的激波湍流边界层干扰区传热实验研究. 力学学报, 1981, 17(1): 68-76 (Yu Hongru, Li Zhongfa. Heat transfer studies in the region of shock and turbulent boundary layer interaction induced by a cylindrical protuberance. Chinese Journal of Theoretical and Applied Mechanics, 1981, 17(1): 68-76 (in Chinese)
    [4] Wang Y, Ozawa H, Koyama H, et al. Abort Separation of Launch Escape System Using Aerodynamic Interference. AIAA Journal, 2012, 51(1): 270-275
    [5] Xue X, Wen CY. Review of unsteady aerodynamics of supersonic parachutes. Progress in Aerospace Sciences, 2021, 125: 100728 doi: 10.1016/j.paerosci.2021.100728
    [6] Liu Y, Qian Z, Lu W, et al. Numerical investigation on the safe stage-separation mode for a TSTO vehicle. Aerospace Science and Technology, 2020, 107: 106349 doi: 10.1016/j.ast.2020.106349
    [7] 张国成, 姚彦龙, 王慧. 美国两级入轨水平起降可重复使用空天运载器发展综述. 飞机设计, 2018, 38(2): 1-6 (Zhang Guocheng, Yao Yanlong, Wang Hui. A survey on development of two-stage-to-orbit horizontal-takeoff-horizontal-landing reusable launch vehicle in USA. Aircraft Design, 2018, 38(2): 1-6 (in Chinese)
    [8] Iwafuji H, Kanazaki M, Fujikawa T. Plume Effect of Flowfield Around Winged Two-Stage-To-Orbit and Its Flight Characteristics. AIAA Scitech 2019 Forum. San Diego, California; American Institute of Aeronautics and Astronautics. 2019
    [9] 唐伟, 刘深深, 雷余等. 用于级间分离研究的TBCC动力 TSTO气动布局概念设计. 空气动力学学报, 2019, 37(2)

    Tang Wei, Liu Shenshen, Yu Lei, et al. Conceptual design of TBCC based TSTO configurations for stage separation investigation. ACTA AERODYNAMIC SINICA, 2019, 37(2) (in Chinese)
    [10] 左光, 艾邦成. 先进空间运输系统气动设计综述. 航空学报, 2021, 42(2): 624077-624077

    Zuo G, Ai B. Aerodynamic design of advanced space transportation system: Review. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(2): 624077 (in Chinese)
    [11] Dissel AF, Kothari AP, Lewis MJ. Investigation of two-stage-to-orbit airbreathing launch-vehicle configurations. Journal of Spacecraft and Rockets, 2006, 43(3): 568-574 doi: 10.2514/1.17916
    [12] Mckinney L, Farrell D, Bogar T, et al. Investigation of TSTO Propulsion System Options. 14 th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. Canberra, Australia; American Institute of Aeronautics and Astronautics. 2006
    [13] Jia JH, Fu DB, He ZP, et al. Hypersonic aerodynamic interference investigation for a two-stage-to-orbit model. Acta Astronautica, 2020, 168: 138-145 doi: 10.1016/j.actaastro.2019.11.038
    [14] Cvrlje T. Unsteady separation of a two-stage hypersonic vehicle. 30 th Fluid Dynamics Conference. Norfolk, VA; American Institute of Aeronautics and Astronautics. 1999
    [15] Cvrlje T, Breitsamter C, Weishaupl C, et al. Euler and Navier-Stokes Simulations of Two-Stage Hypersonic Vehicle Longitudinal Motions. Journal of Spacecraft and Rockets, 2000, 37(2): 242-251 doi: 10.2514/2.3552
    [16] Moelyadi MA, Breitsamter C, Laschka B. Stage-Separation Aerodynamics of Two-Stage Space Transport Systems Part1: Steady-State Simulations. Journal of Spacecraft and Rockets, 2008, 45(6): 1230-1239 doi: 10.2514/1.34828
    [17] Kitamura K, Men'shov I, Nakamura Y. Shock/Shock and Shock/Boundary-Layer Interactions in Two-Body Configurations. 35 th AIAA Fluid Dynamics Conference and Exhibit. Toronto, Ontario, Canada; American Institute of Aeronautics and Astronautics. 2005
    [18] Kitamura K, Nakamura T, Men'shov I, et al. CFD Analysis of Aerodynamic Interference Between a Delta Wing and a Hemisphere-Cylinder. 42 nd AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada; American Institute of Aeronautics and Astronautics. 2004
    [19] Ozawa H, Hanai K, Ibrahim M, et al. Experimental Analysis of TSTO Aerodynamic Heating Problems at Hypersonic Speed. 15 th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Dayton, Ohio; American Institute of Aeronautics and Astronautics. 2008
    [20] Ozawa H, Hanai K, Kitamura K, et al. Experimental Investigation of Shear-Layer/Body Interactions in TSTO at Hypersonic Speeds. 46 th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada; American Institute of Aeronautics and Astronautics. 2008
    [21] Ozawa H, Kitamura K, Hanai K, et al. Unsteady Aerodynamic Interaction between Two Bodies at Hypersonic Speed. Transactions of the Japan Society for Aeronautical and Space Sciences, 2010, 53(180): 114-121 doi: 10.2322/tjsass.53.114
    [22] Ozawa H, Mori K, Nakamura Y. Experimental Analysis of TSTO Aerodynamic Interactions Based on Oil Flow Patterns at Hypersonic Speed. 47 th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Orlando, Florida; American Institute of Aeronautics and Astronautics. 2009
    [23] Bordelon W, Frost A, Reed D. Stage Separation Wind Tunnel Tests of a Generic TSTO Launch Vehicle. 21 st AIAA Applied Aerodynamics Conference. Orlando, Florida; American Institute of Aeronautics and Astronautics. 2003
    [24] Jia J, Fu D, He Z. Aerodynamic interactions of a Reusable Launch Vehicle model with different nose configurations. Acta Astronautica, 2020, 177: 58-65 doi: 10.1016/j.actaastro.2020.07.022
    [25] Brenner P. Numerical simulation of three-dimensional and unsteady aerodynamics about bodies in relative motion applied to a TSTO separation. 5 th International Aerospace Planes and Hypersonics Technologies Conference. Munich, Germany; American Institute of Aeronautics and Astronautics. 1993
    [26] Moelyadi MA, Breitsamter C, Laschka B. Stage-Separation Aerodynamics of Two-Stage Space Transport Systems Part 2: Unsteady Simulation. Journal of Spacecraft and Rockets, 2008, 45(6): 1240-1250 doi: 10.2514/1.35059
    [27] Wang Y, Nakamura Y. Supersonic Unsteady Flow Around a Capsule-Shaped Abort System with Angle of Attack. International Journal of Aerospace and Lightweight Structures (IJALS) , 2011, 1(1): 133-142 doi: 10.3850/S2010428611000043
    [28] Wang YP, Ozawa H, Nakamura Y. Numerical Investigation of Supersonic Oscillatory Flow with Strong Interference over a Capsule-shaped Abort System. Transactions of the Japan Society for Aeronautical and Space Sciences, 2012, 55(5): 286-294 doi: 10.2322/tjsass.55.286
    [29] Weingertner S. SAENGER - The reference concept of the German Hypersonics Technology Program. 5 th International Aerospace Planes and Hypersonics Technologies Conference. Munich, Germany; American Institute of Aeronautics and Astronautics. 1993
    [30] Chakravarthy S, Peroomian O, Sekar B. Some internal flow applications of a unified-grid CFD methodology. 32 nd Joint Propulsion Conference and Exhibit. Florida; American Institute of Aeronautics and Astronautics. 1996
    [31] Luo H, Baum J, Lohner R. Extension of HLLC Scheme for Flows at all Speeds. 16 th AIAA Computational Fluid Dynamics Conference. Orlando, Florida; American Institute of Aeronautics and Astronautics. 2003
    [32] Sutherland W. The viscosity of gases and molecular force. Philosophical. 1893: 507-531
    [33] Hanai K, Ozawa H, Nakamura Y. Two-Stage-To-Orbit Booster Configuration for Reducing Aerodynamic Heating at Hypersonic Speed. 37 th AIAA Fluid Dynamics Conference and Exhibit. Miami, FL; American Institute of Aeronautics and Astronautics. 2007
    [34] Kitamura K, Nishino A, Ishikawa T, et al. A Device for Reduction of Heat Flux Produced by Hypersonic Shock Interference. 34 th AIAA Fluid Dynamics Conference and Exhibit. Portland, Oregon; American Institute of Aeronautics and Astronautics. 2004
    [35] 张来平, 邓小刚, 张涵信. 动网格生成技术及非定常计算方法进展综述. 力学进展, 2010, 40(4): 424-447 (ZHANG Lai-Ping. Reviews of moving grid generation techniques and numerical methods for unsteady flow. Advances in Mechanics, 2010, 40(4): 424-447 (in Chinese) doi: 10.6052/1000-0992-2010-4-J2009-123
    [36] Degrez G, Boccadoro CH, Wendt JF. The interaction of an oblique shock wave with a laminar boundary layer revisited. An experimental and numerical study. Journal of Fluid Mechanics, 1987, 177: 247-263
    [37] R. R. Heim. CFD Wing/ Pylon/ Finned Store Mutual Interference Wind Tunnel Experiment. AEDC-TSR-91-P4, 1991
    [38] Snyder D, Koutsavdis E, Anttonen J. Transonic Store Separation Using Unstructured CFD with Dynamic Meshing. 33 rd AIAA Fluid Dynamics Conference and Exhibit. Orlando, Florida; American Institute of Aeronautics and Astronautics. 2003
    [39] 刘竹生, 王小军, 王国辉等. 航天分离设计. 北京: 中国宇航出版社, 2017: 7-8
  • 加载中
图(19) / 表(3)
计量
  • 文章访问数:  39
  • HTML全文浏览量:  13
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 录用日期:  2021-11-23
  • 网络出版日期:  2021-11-23

目录

    /

    返回文章
    返回