EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于S-ALE方法的圆柱体垂直出水破冰研究

汪春辉 王嘉安 王超 郭春雨 朱广元

汪春辉, 王嘉安, 王超, 郭春雨, 朱广元. 基于S-ALE方法的圆柱体垂直出水破冰研究. 力学学报, 待出版 doi: 10.6052/0459-1879-21-217
引用本文: 汪春辉, 王嘉安, 王超, 郭春雨, 朱广元. 基于S-ALE方法的圆柱体垂直出水破冰研究. 力学学报, 待出版 doi: 10.6052/0459-1879-21-217
Wang Chuihui, Wang Jiaan, Wang Chao, Guo Chunyu, Zhu Guangyuan. Research on vertical upward water breakthrough of cylinder based on s-ale method. Chinese Journal of Theoretical and Applied Mechanics, in press doi: 10.6052/0459-1879-21-217
Citation: Wang Chuihui, Wang Jiaan, Wang Chao, Guo Chunyu, Zhu Guangyuan. Research on vertical upward water breakthrough of cylinder based on s-ale method. Chinese Journal of Theoretical and Applied Mechanics, in press doi: 10.6052/0459-1879-21-217

基于S-ALE方法的圆柱体垂直出水破冰研究

doi: 10.6052/0459-1879-21-217
基金项目: 国家自然科学基金青年项目(51909043, 51809055)和国家自然科学基金重点项目(51639004)资助
详细信息
    作者简介:

    王超, 副教授, 主要研究方向: 船舶推进性能与节能技术、特种推进技术、冰区船舶航行性能预报及分析技术. E-mail: wangchao0104@hrbeu.edu.cn

  • 中图分类号: U663.6;U661.311

Research on vertical upward water breakthrough of cylinder based on S-ALE method

  • 摘要: 以往针对结构物垂直贯穿冰层破裂的研究多不考虑水的作用, 与实际应用场景不符. 本文应用LS−DYNA有限元软件建立了基于S−ALE(结构化任意拉格朗日欧拉)方法及罚函数流固耦合算法的冰−水−结构物耦合作用数值模拟方法. 采用欧拉算法描述空气域和水域, 采用拉格朗日算法描述圆柱体结构和冰层结构, 使用弹塑性应变率模型表征冰材料力学性质. 自主搭建了圆柱体垂直贯穿冰层试验台架, 验证了有限元方法计算结构物−冰层相互作用问题的可行性. 通过模拟圆柱体垂直出水破冰过程, 并与无水环境下圆柱体垂直贯穿冰层破裂过程进行对比. 结果表明: 有水环境下结构物−冰层间作用存在“水垫效应”; 冰层突破载荷极值大小与有、无水环境无显著变化; 有水环境下的结构物突破冰层冰载荷持续时间明显长于无水环境下持续时间; 有水环境冰层弹性变形阶段更长, 且有水环境冰层挠度变化大于无水环境下的挠度变化. 本文研究成果为极地冰区环境下结构物垂直出水破冰的结构强度计算及优化设计提供了研究基础.

     

  • 图  1  数值模型尺寸

    Figure  1.  Size of numerical model

    图  2  圆柱体垂直出水破冰数值模型

    Figure  2.  Numerical model of vertical upward water of cylinder breaking through level ice

    图  3  冰梁四点弯曲数值模拟几何模型

    Figure  3.  Geometric model for numerical simulation of four-point bending of ice beam

    图  4  冰梁四点弯曲数值验证断裂现象

    Figure  4.  Numerical verification of fracture phenomenon in four-point bending of ice beam

    图  5  冰梁四点弯曲数值验证模拟结果

    Figure  5.  Numerical verification of simulation results of four-point bending of ice beam

    图  6  试验用主要仪器

    Figure  6.  Main instruments for test

    图  7  −25°C单轴压缩试验典型破坏过程

    Figure  7.  Typical failure process of uniaxial compression test at −25°C

    图  8  −25°C巴西圆盘试验典型破坏过程

    Figure  8.  Typical failure process of Brazilian disk test at −25°C

    图  9  试验用冻结模型冰

    Figure  9.  Frozen model ice used in the test

    图  10  试验现象

    Figure  10.  Experimental phenomenon

    图  11  冰层垂直贯穿破裂试验重复性验证

    Figure  11.  Repeatability verification of vertical penetr-ation test of level ice

    图  12  不同网格尺寸下的冰载荷时历曲线

    Figure  12.  Time history curve of ice load under different element sizes

    图  13  圆柱体垂直破冰数值模拟冰层破裂过程

    Figure  13.  Numerical simulation of level ice rupture process by cylinder vertical ice breaking

    图  14  圆柱体垂直破冰载荷数值与试验对比曲线

    Figure  14.  Numerical and experimental comparison curve of vertical ice breaking load of cylinder

    图  15  楔形体入水过程自由表面变形

    Figure  15.  Deformation of free surface of wedge during water entry

    图  16  入水时间0.0158 s时压力分布对比图

    Figure  16.  Comparison diagram of pressure distribution when water entry time is 0.0158 s

    图  17  入水垂向速度随时间变化图

    Figure  17.  Variation diagram of vertical velocity of water inflow with time

    图  18  有水和无水环境下圆柱体上浮破冰冰载荷时历曲线

    Figure  18.  Time history curve of ice breaking load on floating cylinder in water and waterless environment

    图  19  冰层挠度测量点

    Figure  19.  Measuring point of level ice deflection

    图  20  圆柱体水下上浮阶段冰层各点挠度

    Figure  20.  Deflection of each point of level ice during underwater floating of cylinder

    图  21  有水环境和无水环境下圆柱体上浮破冰过程中冰层A点挠度变化

    Figure  21.  Deflection change of point A of level ice in the process of cylinder floating and breaking ice in water environment and waterless environment

    图  22  冰层未发生断裂时Von Mises等效应力云图

    Figure  22.  Von Mises equivalent stress diagram when the level ice does not break

    22  冰层未发生断裂时Von Mises等效应力云图 (续)

    22.  Von Mises equivalent stress diagram when the level ice does not break (continued)

    图  23  冰层发生断裂时Von Mises等效应力云图及现象

    Figure  23.  Von Mises equivalent stress diagram and phenomenon when level ice breaks

    表  1  海水冰应变率和压缩屈服应力比例系数

    Table  1.   Strain rates and compressive yield stress scale factors of sea ice

    $ \dot \varepsilon $, s−1CYSF$ \dot \varepsilon $, s−1CYSF
    10e-90.2710e-21.22
    10e-80.33610e-11.52
    10e-70.4171.01.89
    10e-60.5210.02.348
    10e-50.643100.02.91
    10e-40.81000.03.62
    10e-31.0
    下载: 导出CSV

    表  2  主要材料参数

    Table  2.   Main material parameters

    NameCylinderLevel ice
    Physical dimension(m)d:0.03 h:0.050.5*0.5*0.03
    Element typeSHELL163SOLID164
    Element size(m)0.0010.0035
    Element number6932112500
    Density(kg/m3)7850917(Freshwater ice)
    900(Sea ice)
    Young's modulus
    (Gpa)
    2001(Freshwater ice)
    3(Sea ice)
    Poisson's ratio0.30.3
    Initial compressi-ve strength(Mpa)--2.41(Freshwater ice)
    5.8(Sea ice)
    Initial tensile str-ength(Mpa)--0.39(Freshwater ice)
    0.58(Sea ice)
    下载: 导出CSV

    表  3  空气、水相关参数设置

    Table  3.   Setting of air and water related parameters

    NameAirWater
    Material typeMAT_NULLMAT_NULL
    Equation of stateEOS_LINEARPOLYNOMIALEOS_GRUNEISEN
    Density(kg/m3)1.251000
    Pressure cutoff(Pa)−107−107
    Viscosity coefficient1
    下载: 导出CSV
  • [1] LINDQVIST G. A Straightforward method for calculation of ice resistance of ships//In 10th International Conference on Port and Ocean Engineering under Arctic Conditions. Lulea: POAC, 1989
    [2] Riska K. Models of ice-structure contact for engineering applications. Studies in Applied Mechanics, 1995, 42(6): 77-103
    [3] Aksnes V. A simplified interaction model for moored ships in level ice. Cold Regions Science & Technology, 2010, 63(1-2): 29-39
    [4] Tan Xiang. Numerical Investigation of Ship’s Continuous-Mode Icebreaking in Level Ice. [PhD Thesis]. Norwegian University of Science & Technology, 2014
    [5] 钱源. 垂向破冰冰载荷计算方法研究. [硕士论文]. 哈尔滨: 哈尔滨工程大学, 2020

    Qian Yuan. Study on the calculation method forthe ice-load of vertical ice-breaking. [Master Thesis]. Harbin: Harb-in Engineering University, 2020 (in Chinese)
    [6] 孟祥斌. 潜艇上浮破冰作用力的研究. [硕士论文]. 哈尔滨: 哈尔滨工业大学, 2019

    Meng Xiangbin. Research on the force of submarineto destroy the ice layer upwards. [Master Thesis]. Harbin: Harbin Institute of Technology, 2019 (in Chinese)
    [7] 叶礼裕, 王超, 郭春雨等. 潜艇破冰上浮近场动力学模型. 中国舰船研究, 2018, 13(02): 51-59 (Ye Liyu, Wang Chao, Guo Chunyu. et al Peri-dynamic model for submarine surfacing through ice. Chinese Journal of Ship Research, 2018, 13(02): 51-59 (in Chinese) doi: 10.3969/j.issn.1673-3185.2018.02.007
    [8] Sören Ehlers, Pentti Kujala. Optimization-based material parame-ter identification for the numerical simulation of sea ice in four- point bending. Engineering for the Maritime Enviroument. 2014, 228: 70-80
    [9] Rüdiger U, Franzvon Bock, Polach. Numerical and an-alysis of the bending strength of model–scale ice. Cold Regions Science & Technology, 2015, 118: 91-104
    [10] Gagnon R. A numerical model of ice crushing using a foam analogue. Cold Regions Science and Technology. 2011. (65): 335-350
    [11] Wang, J., Derradji-Aouat, A. Numerical assessment for station-ary structure (Kulluk) in moving broken ice//Proceedings of the 21st International Conference on Port and Ocean Engineering un-der Arctic Conditions, July 10-14, 2011, Montreal, Canada, POAC11-172
    [12] Ranta J, Polojärvi A, Tunki J. The statistical analysis of peak ice loads in a simulated ice-structure interacti-on process. Cold Regions Science and Techonology, 2016, 133: 46-55
    [13] 郭春雨, 李夏炎, 王帅等. 冰区航行船舶碎冰阻力预报数值模拟方法. 哈尔滨工程大学学报, 2016, 37(02): 145-150+15 (Guo Chunyu, Li Xiayan, Wang shuai. et al A numerical simulation method for resistance prediction of ship in pack ice. Journal of Harbin Engineering University, 2016, 37(02): 145-150+15 (in Chinese)
    [14] Wang Chao, Hu Xiaohan, Tian Taiping. et al Numerical simulation of ice loads on a ship in broken ice fields using an elastic ice model. International Journal of Naval Architecture and Ocean Engineering, 2020(12): 414-427
    [15] 黄焱, 史庆增, 宋安. 冰温度膨胀力的有限元分析. 水利学报, 2005, 36(3): 314-320 (Huang Yan, Shi Qingzeng, Song an. et al Finite el-ement analysis of ice temperature expansion force. Journal of Hydraulic Engineering, 2005, 36(3): 314-320 (in Chinese) doi: 10.3321/j.issn:0559-9350.2005.03.010
    [16] 任奕舟, 邹早建. 破冰船在冰层中连续破冰时的冰阻力预报. 上海交通大学学报, 2016, 50(8): 21-29 (Ren Yizhou, Zou Zaojian. Ice resistance prediction of an icebreaker during continuous icebreak-ing in level ice. Journal of Chongqing University, 2016, 50(8): 21-29 (in Chinese)
    [17] 王峰. 基于粘聚单元模型的海洋结构物与平整冰相互作用数值研究. [博士论文]. 上海: 上海交通大学, 2019

    Wang Feng. Numerical researc-h on the interactions between marine structures and level ice bas-ed on cohesive element model. [PhD Thesis]. Shanghai: Shanghai Jiao Tong University, 2019(in Chinese)
    [18] Chen Zhe, He Yanping, Gu Yingbin. et al A novel method for numerical simulation of the interaction between level ice and m-arine structures. Journal of Marine Science and Technology, 2021: 1437-8213
    [19] 王明振, 曹东风, 吴彬等. 基于S-ALE流固耦合方法的飞机水上迫降动力学数值分析. 重庆大学学报, 2020, 43(06): 21-29 (Wang Mingzh-en, Cao Dongfeng, Wu Bin. et al Numerical analysis of aircraft dynamic behavior in ditchng based on S-ALE fluid-structure inter-action method. Journal of Chongqing University, 2020, 43(06): 21-29 (in Chinese)
    [20] Wang, J., Derradji-Aouat, A. Ship performance in broken ice floes-Preliminary numerical simulations. // Institute for Ocean Techno-logy, National Research Council, St. John’s, NL, Canada. Report No. TR-2010-24
    [21] Wang J., Derradji-Aouat, A. Implementation, verification and validation of the multi-surface failure envelope for ice in explicit FEA//20th International Conference on Port and Ocean Engineering under Arctic Conditions, June 9-12, 2009, Luleå, Sweden., POAC09-112: IR-2009-16
    [22] Kelly S. Carney, David J. Benson A High Strain Rate Model with Failure for Ice in LS-DYNA. International Journal of Solids and Structures, 2006, 43(25-26): 1820-7839
    [23] Das, J., Polic, D., Ehlers, S. and Amdahl, J. Numerical Simul-ation of an Ice Beam in Four-Point Bending using SPH. San Fra-ncisco, California, USA : Proceedings of the ASME 2014 33rd Int-ernational Conference on Ocean, Offshore and Arctic Engineering, 2014
    [24] Sazidy, M., et al. Effect of Ship Speed on Level Ice Edge Bre-aking//International Conference on Offshore Mechanics and Arctic Engineering, American Society of Mechanical Engineers, 2014, 45516: V08BT06A034
    [25] Sánchez, J., Pedroche, D. A., Varas, D., et al Numerical mode-ling of ice behavior under high velocity impacts. International Journal of Solids and Structures, 2012, 49(14): 1919-1927 doi: 10.1016/j.ijsolstr.2012.03.038
    [26] Petrovic, J. J Review Mechanical properties of ice and snow. Journal of Materials Science, 2003, 38(1): 1-6 doi: 10.1023/A:1021134128038
    [27] Sodhi DS. Vertical penetration of floating ice sheets. Internati-onal Journal of Solids and Structures, 1998, 35(31-32): 425-4294
    [28] Kujala P, Riska K and Varsta P. Results from in situ four poi-nt bending tests with Baltic Sea ice. Helsinki, Finland: In: Proce-edings of IAHR symposium on ice problems, 1990
    [29] 肖赞. 巴西试验法测定冰力学性质的可靠性研究[D]. 辽宁: 大连理工大学, 2017

    Xiao Zan. Research on Reliability of Brazilian Test Method to Determine the Mechanical Properties of Ice. [MasterThesis]. Dalian: Dalian University of Technology, 2017 (in Chinese)
    [30] 陈光茂, 郑小波, 毋晓妮等. 二维楔形体入水问题的数值和实验研究. 舰船科学技术, 2021, 43(01): 53-60 (Chen Guangmao, Zheng Xiaobo, Wu Xiaoni, et al. Numerical and experimental study of water ent-ry problem of two-dimensional wedge. Ship Science and Technology, 2021, 43(01): 53-60 (in Chinese)
    [31] ZHAO R, FALTINSEN O. Water entry of two-dimensional bodies. Journal of Fluid Mechanics, 1993, 246(1): 593
    [32] 韩文栋, 张健, 刘海冬等. 考虑水介质作用的船冰碰撞解耦方法及载荷预报. 舰船科学技术, 2017, 39(11): 17-21 (Han Wendong, Zhang Jian, Liu Haidong. et al Considering the action of the wat-er medium in decoupling method and load forecast of the ship i-ce collision. Ship science and technology, 2017, 39(11): 17-21 doi: 10.3404/j.issn.1672-7649.2017.11.004
  • 加载中
图(26) / 表(3)
计量
  • 文章访问数:  40
  • HTML全文浏览量:  11
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-08
  • 录用日期:  2021-10-07
  • 网络出版日期:  2021-10-09

目录

    /

    返回文章
    返回