EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

鳗鲡科鱼类变刚度特性对推进性能影响研究

张旭尧 崔祚 尹存宏 程安楠

张旭尧, 崔祚, 尹存宏, 程安楠. 鳗鲡科鱼类变刚度特性对推进性能影响研究. 力学学报, 待出版 doi: 10.6052/0459-1879-23-239
引用本文: 张旭尧, 崔祚, 尹存宏, 程安楠. 鳗鲡科鱼类变刚度特性对推进性能影响研究. 力学学报, 待出版 doi: 10.6052/0459-1879-23-239
Zhang Xuyao, Cui Zuo, Yin Cunhong, Cheng Annan. Study on the effect of variable stiffness characteristics on propulsion performance of anguilliform fish. Chinese Journal of Theoretical and Applied Mechanics, in press doi: 10.6052/0459-1879-23-239
Citation: Zhang Xuyao, Cui Zuo, Yin Cunhong, Cheng Annan. Study on the effect of variable stiffness characteristics on propulsion performance of anguilliform fish. Chinese Journal of Theoretical and Applied Mechanics, in press doi: 10.6052/0459-1879-23-239

鳗鲡科鱼类变刚度特性对推进性能影响研究

doi: 10.6052/0459-1879-23-239
基金项目: 国家自然科学基金(No.12002097, No.12262006), 贵州省自然科学基金(No.ZK[2021]-266, No.[2017]5789-20), 贵州理工学院高层次人才项目(XJGC20190956)资助
详细信息
    通讯作者:

    崔祚, 副教授, 主要研究方向为计算流体力学, 仿生机器人和水下发射技术. E-mail: cuizuo@yeah.net

  • 中图分类号: O352, R318.01

STUDY ON THE EFFECT OF VARIABLE STIFFNESS CHARACTERISTICS ON PROPULSION PERFORMANCE OF ANGUILLIFORM FISH

  • 摘要: 生物学研究表明, 波动推进鱼类的鱼体刚度对其推进性能有着重要影响, 通过改变鱼体刚度可获得优异的游动特性, 但鱼类肌肉驱动模式与鱼体刚度和游动性能的关系尚不清晰. 鉴于此, 本文以鳗鲡科鱼类作为研究对象, 基于粘弹性梁理论和Taylor流体理论, 建立由生物学钙离子肌肉驱动的鳗鲡科鱼类游动模型, 研究肌肉驱动和鱼体刚度变化对推进性能的影响. 结果表明, 肌肉驱动力随刚度增加呈先快速增加后缓慢下降的变化趋势, 而随着肌肉驱动力增加, 鱼体游动速度随刚度增加而增加并逐渐趋于稳定. 当肌肉驱动频率由1Hz增加到2Hz时, 游动速度和启动加速度可分别提升55%和129%, 可见增大鱼体刚度可显著提升推进性能. 为了验证上述结论, 设计了基于串并联结构的变刚度实验平台, 实验表明鱼体的变刚度特性能显著提升推进性能. 当舵机驱动频率由1 Hz增加到2 Hz时, 通过统一变化弹簧刚度大小推力可提升2.5倍. 上述研究结果可为改变鱼体刚度提升游动性能提供参数设计指导, 为研制变刚度仿生机器鱼提供了理论依据.

     

  • 图  1  基于粘弹性变截面梁的鱼游模型

    Figure  1.  The dynamic model of fish body based on the viscoelastic rod with variable cross-sections

    图  2  鳗鲡科鱼体离散化模型

    Figure  2.  The discretization model of anguilliform fish

    图  3  鳗鲡科鱼游模型求解流程图

    Figure  3.  The solution flowchart of anguilliform fish model

    图  4  基于钙离子肌肉力模型产生的驱动力

    Figure  4.  The driving force generated based on the kinetic model of calcium ions

    图  5  游动速度结果

    Figure  5.  Results of swimming speeds

    图  6  鱼体波结果

    Figure  6.  Results of fish midline motions

    图  7  波速比结果

    Figure  7.  Results of wave speed ratios

    图  8  不同频率下肌肉驱动幅值系数对游动速度的影响

    Figure  8.  The effects of muscle force coefficient on swimming speed at different frequencies

    图  9  不同驱动幅值下鱼体刚度对游动速度的影响

    Figure  9.  The effects of Young’s modulus of fish body on swimming speed under different driving amplitudes

    图  10  不同驱动幅值下鱼体刚度对启动加速度的影响

    Figure  10.  The effects of Young’s modulus of fish body on the start acceleration under different driving amplitudes

    图  11  不同肌肉驱动频率下鱼体刚度对游动速度的影响

    Figure  11.  The effects of fish body stiffness on swimming speed under different muscle driving frequencies

    图  12  鱼体变刚度特性对游动速度的影响

    Figure  12.  The effects of the variable stiffness of fish body on the swimming speed

    图  13  不同肌肉驱动频率下鱼体刚度对加速度的影响.

    Figure  13.  The effects of fish body stiffness on the start acceleration under different muscle driving frequencies

    图  14  鱼体变刚度特性对启动加速度的影响

    Figure  14.  The effects of the variable stiffness of fish body on the start acceleration

    图  15  变刚度实验平台

    Figure  15.  The experimental platform of variable stiffness

    图  16  实验测得的推力数据

    Figure  16.  Thrust data measured in the experiments

    图  17  变刚度条件下推力随驱动频率变化的实验结果

    Figure  17.  Experiment results of the thrust varied with driving frequency under the condition of variable body stiffness

    表  1  鳗鲡科鱼体模型参数

    Table  1.   The parameters of anguilliform fish model

    ParameterDefinitionValue
    fFrequency of muscle activation1 Hz
    DMuscle force coefficient0.03 N/m3
    EYoung's modulus10−3 MPa
    μDamping factor50 N·s/m2
    μfDynamic viscosity10−3 Pa·s
    LenLength of fish body21 cm
    ρfFluid density1 g/cm3
    ρDensity of fish body1 g/cm3
    NNumber of discrete sections21
    VcurWave velocity of muscles activation1 BL/s
    tDuration of muscle activation0.36 s
    下载: 导出CSV

    表  2  不同驱动幅值对应最优速度表

    Table  2.   Table of the optimal speeds varied with different driving amplitudes

    f /HzD/(N/m3)Vmas/(BL/s)
    10.130.483
    1.250.250.603
    1.50.490.735
    1.750.960.853
    21.890.965
    下载: 导出CSV

    表  3  不同肌肉驱动频率和杨氏模量条件下的鱼体最优速度

    Table  3.   The optimal velocity of fish body under different muscle drive frequencies and Young's modulus

    f /HzD/(N/m3)Vmas/(BL/s)
    10.06310.709
    1.250.08010.889
    1.50.08811.026
    1.750.08711.105
    20.08811.126
    下载: 导出CSV

    表  4  不同肌肉驱动频率和杨氏模量条件下的鱼体最优启动加速度

    Table  4.   The optimal start acceleration of fish body under different muscle drive frequencies and Young's modulus

    f /HzE/MPaVmas /(BL/s2)
    10.05610.445
    1.250.07610.654
    1.50.09210.818
    1.750.09910.911
    20.09920.943
    下载: 导出CSV

    表  5  鱼体关节尺寸参数

    Table  5.   The joint parameters of fish body

    Parameter/cmJoint 1Joint 2Joint 3Joint 4
    Lh5555
    ra2.772.3421.6
    rb3.292.772.342
    Lc5555
    下载: 导出CSV

    表  6  实验中弹簧力k·ΔL计算结果

    Table  6.   Results of the spring force k·ΔL in the experiments

    k·ΔL/NJoint 1Joint 2Joint 3Joint 4
    k1·ΔL0.360.330.310.31
    k2·ΔL1.251.131.051.06
    k3·ΔL3.323.012.82.81
    k4·ΔL7.56.816.336.37
    下载: 导出CSV

    表  7  模型中弹簧力λ·Δl计算结果

    Table  7.   Results of spring force λ·Δl in the simulations

    λ·Δl/NE/MPaN = 3N = 6N = 9N = 12
    aNbNEπΔl/20.050.700.610.520.43
    aNbNEπΔl/20.11.391.211.030.85
    下载: 导出CSV

    表  8  实验中转动刚度Q计算结果

    Table  8.   Results of the rotational stiffness Q in the experiments

    k
    (N/cm)
    Q1
    (N·cm/rad)
    Q2
    (N·cm/rad)
    Q3
    (N·cm/rad)
    Q4
    (N·cm/rad)
    k111.227.44.592.58
    k238.4925.415.748.87
    k3102.2667.4841.8323.56
    k4231.32152.6494.6253.3
    下载: 导出CSV

    表  9  模型中弯曲刚度G计算结果

    Table  9.   Results of the bending stiffness G in the simulations

    E
    (MPa)
    G3
    (Kg·mm2)
    G6
    (Kg·mm2)
    G9
    (Kg·mm2)
    G12
    (Kg·mm2)
    0.154.5736.0622.2912.56
    0.0527.2918.0311.146.28
    下载: 导出CSV
  • [1] McMillen T, Holmes P. An elastic rod model for anguilliform swimming. Journal of Mathematical Biology, 2006, 53: 843-886 doi: 10.1007/s00285-006-0036-8
    [2] Friedman ST, Price SA, Wainwright PC. The effect of locomotion mode on body shape evolution in teleost fishes. Integrative Organismal Biology, 2021, 3(1): obab016 doi: 10.1093/iob/obab016
    [3] Naughton LF, Kruppert S, Jackson B, et al. A Tail of four fishes: an analysis of kinematics and material properties of elongate fishes. Integrative and Comparative Biology, 2021, 61(2): 603-612 doi: 10.1093/icb/icab060
    [4] Luo Y, Qi D. A simulation method for muscle-driven swimming and its applications. Physics of Fluids, 2021, 33: 061904 doi: 10.1063/5.0053692
    [5] Shelton RM, Thornycroft PJ, Lauder GV. Undulatory locomotion of flexible foils as biomimetic models for understanding fish propulsion. Journal of Experimental Biology, 2014, 217(12): 2110-2120
    [6] Tytell ED, Carr JA, Danos N, et al. Body stiffness and damping depend sensitively on the timing of muscle activation in lampreys. Integrative and comparative biology, 2018, 58(5): 860-873
    [7] Wang T, Ren Z, Hu W, et al. Effect of body stiffness distribution on larval fish–like efficient undulatory swimming. Science Advances, 2021, 7(19): eabf7364 doi: 10.1126/sciadv.abf7364
    [8] McHenry MJ, Pell CA, Long JH Jr. Mechanical control of swimming speed: stiffness and axial wave form in undulating fish models. The Journal of experimental biology, 1995, 198(11): 2293-2305 doi: 10.1242/jeb.198.11.2293
    [9] Donatelli CM, Roberts AS, Scott E, et al. Foretelling the flex-vertebral shape predicts behavior and ecology of fishes. Integrative and Comparative Biology, 2021, 61(2): 414-426 doi: 10.1093/icb/icab110
    [10] Zou Q, Zhou C, Lu B, et al. Tail-stiffness optimization for a flexible robotic fish. Bioinspiration & Biomimetics, 2022, 17(6): 1748-3190
    [11] Tack NB, Du Clos KT, Gemmell BJ. Anguilliform Locomotion across a natural range of swimming speeds. Fluids, 2021, 6(3): 127 doi: 10.3390/fluids6030127
    [12] Hang H, Heydari S, Costello JH, et al. Active tail flexion in concert with passive hydrodynamic forces improves swimming speed and efficiency. Journal of Fluid Mechanics, 2021, 932: A35
    [13] Tytell ED, Hsu CY, Williams TL, et al. Interactions between internal forces, body stiffness, and fluid environment in a neuromechanical model of lamprey swimming. Proceedings of the National Academy of Sciences, 2010, 107(46): 19832-19837 doi: 10.1073/pnas.1011564107
    [14] Wei C, Hu Q, Liu Y, et al. Performance evaluation and optimization for two-dimensional fish-like propulsion. Ocean Engineering, 2021, 233: 109191 doi: 10.1016/j.oceaneng.2021.109191
    [15] McMillen T, Williams T, Holmes P, et al. Nonlinear muscles, passive viscoelasticity and body taper conspire to create neuromechanical phase lags in anguilliform swimmers. PLoS Computational Biology, 2008, 4(8): 1-16
    [16] Williams TL, Bowtell G, Curtin NA, et al. Predicting force generation by lamprey muscle during applied sinusoidal movement using a simple dynamic model. The Journal of Experimental Biology, 1998, 201(6): 869-875 doi: 10.1242/jeb.201.6.869
    [17] 沈昊嫣, 朱博闻, 王智慧等. 鳗鲡模式游动的鱼体变形曲率波的传播特性研究. 力学学报, 2019, 51(4): 1022-1030 (Shen Haoyan, Zhu Bowen, Wang Zhihui et al. Propagation characteristics of curvature wave along the body in anguilliform fish swimming. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1022-1030 (in Chinese)

    Shen Haoyan, Zhu Bowen, Wang Zhihui et al. Propagation characteristics of curvature wave along the body in anguilliform fish swimming. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(04): 1022-1030 (in Chinese))
    [18] Williams TL, Grillner S, Smoljaninov V, et al. Locomotion in lamprey and trout: the relative timing of activation and movement. The Journal of Experimental Biology, 1989, 143: 559-566 doi: 10.1242/jeb.143.1.559
    [19] Blight, Andrew R. Undulatory swimming with and without waves of contraction. Nature, 1976, 264: 352-354 doi: 10.1038/264352a0
    [20] Long JH, Nipper KS. The importance of body stiffness in undulatory propulsion. American Zoologist, 1996, 36(6): 678-694 doi: 10.1093/icb/36.6.678
    [21] Long JH. Muscles, elastic energy, and the dynamics of body stiffness in swimming eels. Integrative and Comparative Biology, 1998, 38: 771-792
    [22] Zajac FE. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Critical Reviews in Biomedical Engineering, 1989, 17(4): 359-411
    [23] Monroy JA, Powers KL, Pace CM, et al. Effects of activation on the elastic properties of intact soleus muscles with a deletion in titin. Journal Of Experimental Biology, 2017, 220: 828-36
    [24] Williams TL, McMillen T. Strategies for swimming: explorations of the behaviour of a neuro-musculo-mechanical model of the lamprey. Biology Open, 2015, 4(3): 253-258 doi: 10.1242/bio.20149621
    [25] Wallen P, Williams T, Fictive locomotion in the lamprey spinal cord in vitro compared with swimming in the intact and spinal animal. Journal of Phycology, 1984, 347: 225-239
    [26] Tytell ED, Hsu CY, Fauci LJ. The role of mechanical resonance in the neural control of swimming in fishes. Journal of Zoology, 2014, 117(1): 48-56 doi: 10.1016/j.zool.2013.10.011
  • 加载中
图(17) / 表(9)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  6
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 网络出版日期:  2023-09-15

目录

    /

    返回文章
    返回