EI、Scopus 收录
中文核心期刊
戚晓菁, 杜亚辉, 曾为臻, 李学进. 基于微流控的血细胞和干细胞流变学行为研究进展. 力学学报, 2024, 56(5): 1271-1283. DOI: 10.6052/0459-1879-23-604
引用本文: 戚晓菁, 杜亚辉, 曾为臻, 李学进. 基于微流控的血细胞和干细胞流变学行为研究进展. 力学学报, 2024, 56(5): 1271-1283. DOI: 10.6052/0459-1879-23-604
Qi Xiaojing, Du Yahui, Zeng Weizhen, Li Xuejin. Advances in rheological behavior of blood cells and stem cells using microfluidics. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(5): 1271-1283. DOI: 10.6052/0459-1879-23-604
Citation: Qi Xiaojing, Du Yahui, Zeng Weizhen, Li Xuejin. Advances in rheological behavior of blood cells and stem cells using microfluidics. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(5): 1271-1283. DOI: 10.6052/0459-1879-23-604

基于微流控的血细胞和干细胞流变学行为研究进展

ADVANCES IN RHEOLOGICAL BEHAVIOR OF BLOOD CELLS AND STEM CELLS USING MICROFLUIDICS

  • 摘要: 微流控芯片作为一种微全分析技术平台, 具有精确流量控制、少量样本需求和可集成化等诸多优势, 已被广泛应用于生物医学和环境科学等领域. 利用微流控通道结构设计灵活的特点, 可在实验条件下模拟生理和病理条件下的复杂血管微环境, 其与超分辨显微成像技术的整合使得研究人员能够实时观察和分析微观尺度下的细胞动态变化过程. 因此, 在用微流控芯片系统研究细胞形态和力学特性方面也取得了重要进展. 文章重点介绍了微流控芯片技术及基于微流控的数值仿真模拟手段在红细胞、白细胞及干细胞变形和流变学行为中的应用及进展. 首先, 介绍了微流控芯片技术及相关数值仿真手段在红细胞流动变形研究中的应用; 接着, 总结了微流控芯片系统及相关数值模拟在白细胞边集及迁移行为的研究进展; 此外, 也概括了微流控芯片系统及相关数值模拟在干细胞迁移和定向分化机制方面的研究进展. 最后, 总结并展望了微流控芯片技术及其相关的数值模拟在血细胞及干细胞流变学研究中的挑战和未来发展趋势.

     

    Abstract: Microfluidics, which serves as a micro total analysis system, offers various advantages such as precise flow control, low sample requirements, and integratability. It has been widely applied in the fields of biomedicine and environmental science. The flexible design of microfluidic channel structures enables the simulation of complex vascular microenvironments under physiological and pathological conditions. By integrating super-resolution microscopic imaging technology, researchers can observe and analyze dynamic changes in cells at the microscale in real time. Microfluidic chip systems have facilitated significant advances in the study of cell morphological and mechanical properties. This article focuses on the application and progress of microfluidic chip technology and relevant numerical simulation technology to the rheological behavior of red blood cells (RBCs) and white blood cells (WBCs) as well as stem cells. It first introduces the use of microfluidic chips and numerical simulations in the study of RBC deformation. It then discusses the application of microfluidic chip systems and related numerical simulations in WBC margination. Subsequently, it summarizes the application of microfluidic chip systems and related numerical simulations in stem cell migration and directed differentiation. Finally, it provides a prospectus on the challenges and development trends of microfluidic technology and numerical simulation technology in the study of blood cell and stem cell rheology.

     

/

返回文章
返回