EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TMP折纸防护的双稳态软体机器人

刘杰 李志勇 何俊峰 文桂林 王洪鑫 田阳

刘杰, 李志勇, 何俊峰, 文桂林, 王洪鑫, 田阳. TMP折纸防护的双稳态软体机器人. 力学学报, 待出版 doi: 10.6052/0459-1879-23-250
引用本文: 刘杰, 李志勇, 何俊峰, 文桂林, 王洪鑫, 田阳. TMP折纸防护的双稳态软体机器人. 力学学报, 待出版 doi: 10.6052/0459-1879-23-250
Liu Jie, Li Zhiyong, He Junfeng, Wen Guilin, Wang Hongxin, Tian Yang. A tmp origami-shell reinforced bistable soft robot. Chinese Journal of Theoretical and Applied Mechanics, in press doi: 10.6052/0459-1879-23-250
Citation: Liu Jie, Li Zhiyong, He Junfeng, Wen Guilin, Wang Hongxin, Tian Yang. A tmp origami-shell reinforced bistable soft robot. Chinese Journal of Theoretical and Applied Mechanics, in press doi: 10.6052/0459-1879-23-250

TMP折纸防护的双稳态软体机器人

doi: 10.6052/0459-1879-23-250
基金项目: 国家自然科学基金项目(12172095, 11902085, 11832009), 广东省自然学科基金资助项目(2021A1515010320, 2023A1515011770), 广州市科技计划项目(202201020193, 202201010399)资助
详细信息
    通讯作者:

    文桂林, 教授, 主要研究方向: 智能控制与机器人, 特种装备与特种车辆设计, 非线性动力学基础理论, 结构CAE与优化, 多物理场与光电耦合动力学等 . E-mail: glwen@ysu.edu.cn

  • 中图分类号: TP242

A TMP ORIGAMI-SHELL REINFORCED BISTABLE SOFT ROBOT

  • 摘要: 软体机器人在复杂非结构化环境探索搜救等方面展现出了良好的应用潜力, 但仍存在运动速度较慢、软体结构易受损等问题亟需解决. 基于此, 提出了一种Tachi-Miura Polyhedron (TMP)折纸防护的双稳态软体机器人. 软体脊柱、拉簧和TMP折纸外壳组成双稳态系统, 由气压驱动突破双稳态系统的两个能量壁垒, 实现双稳态之间的切换, 并通过快速储存和释放能量驱动软体机器人快速运动. TMP折纸作为软体机器人的外壳, 可为其提供防护, 预防外界坚硬锋利介质刺破软体脊柱; 此外, 其在运动过程中的应变能对软体机器人的双稳态能量势阱具有较大贡献. 结合材料拉伸实验和商用软件中的本构参数拟合法, 确定了软体脊柱材料本构模型参数. 探究了软体脊柱弯曲角度与驱动气压之间的量化关系, 并提出了基于分段常曲率法的软体机器人运动学建模方法. 开展了系列实验测试, 发现所提软体机器人通过图钉模拟的极端环境时仍能正常运动, 在平地上平均速度达到1.81 BL/s, 其质量−运动速度关系图位于软体机器人和刚性机器人的交叉区域, 属于刚−软耦合机器人. 此外, 证实了所提软体机器人在石子路、泥泞地、浅水沟、浅草地和深水池复杂非结构化环境快速运动能力.

     

  • 图  1  TMP折纸防护双稳态软体机器人整体结构设计

    Figure  1.  Design of TMP origami-shell reinforced bistable soft robot

    图  2  前、后脚结构设计

    Figure  2.  Design of front and rear feet

    图  3  软体脊柱几何设计

    Figure  3.  Design of soft spine

    图  4  软体脊柱局部失稳问题

    Figure  4.  Local buckling of soft spine

    图  5  TMP折纸外壳设计: (a)二维单胞; (b)二维折痕图设计; (c)TMP折纸结构; (d)TMP折纸外壳

    Figure  5.  Design of TMP origami-shell: (a) 2 D unit cell, (b) design of 2 D crease pattern, (c) TMP origami structure, (d)TMP origami-shell

    图  6  软体脊柱制备流程

    Figure  6.  Preparation process of soft spine

    图  7  不同硬度软体脊柱弯曲变形对比

    Figure  7.  Deformation of soft spine in different rigidly

    图  8  TMP折纸外壳制备

    Figure  8.  Preparation of TMP origami-shell

    图  9  TMP折纸防护双稳态软体机器人样机

    Figure  9.  Prototype of TMP origami-shell reinforced bistable soft robot

    图  10  硅橡胶拉伸试样

    Figure  10.  Sample of silicone rubber

    图  11  硅橡胶拉伸试验设置

    Figure  11.  Setting of silicone rubber tensile test

    图  12  参数拟合结果

    Figure  12.  Result of parameter fitting

    图  13  不同气压驱动下软体脊柱变形形态(上侧: 实验; 下侧: 仿真)(续)

    Figure  13.  Deformation form of soft spine in different pressure (upside: experiment, downside: simulation)(continued)

    图  14  不同驱动气压下软体脊柱的弯曲角度

    Figure  14.  Bending angle of soft spine in different pressure

    图  15  软体机器人双稳态能量曲线

    Figure  15.  Bistable energy curve of soft robot

    图  16  软体机器人运动学模型

    Figure  16.  Kinematic model of soft robot

    图  17  软体机器人形态理论和实验对比

    Figure  17.  Comparison of theory and experiment of soft robot

    图  18  利用运动学模型和实验研究软体机器人运动位移(续)

    Figure  18.  Kinematic displacement study of soft robot by kinematic model and experiment(continued)

    图  19  TMP折纸外壳防护能力测试

    Figure  19.  Protective capability test of TMP origami-shell

    图  20  软体机器人运动速度测试

    Figure  20.  Speed test of soft robot

    图  21  TMP折纸防护软体机器人质量−运动速度图

    Figure  21.  Mass-speed chart of TMP origami-shell reinforced soft robot

    图  22  复杂非结构化环境运动能力测试

    Figure  22.  Movement capability test in complex unstructured environment

  • [1] 李铁风, 李国瑞, 梁艺鸣等. 软体机器人结构机理与驱动材料研究综述. 力学学报, 2016, 48(4): 756-766 (Li Tiefeng, Li Guorui, Liang Yiming, et al. Review of materials and structures in soft robotics. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 756-766 (in Chinese) doi: 10.6052/0459-1879-16-159

    Li Tiefeng, Li Guorui, Liang Yiming, et al. Review of materials and structures in soft robotics. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 756-766(in Chinese)) doi: 10.6052/0459-1879-16-159
    [2] 王田苗, 郝雨飞, 杨兴帮等. 软体机器人: 结构, 驱动, 传感与控制. 机械工程学报, 2017, 53(13): 1-13 (Wang Tianmiao, Hao Yufei, Yang Xingbang, et al. Soft robotics: structure, actuation, sensing and control. Journal of Mechanical Engineering, 2017, 53(13): 1-13 (in Chinese) doi: 10.3901/JME.2017.13.001

    Wang Tianmiao, Hao Yufei, Yang Xingbang, et al. Soft robotics: structure, actuation, sensing and control. Journal of Mechanical Engineering, 2017, 53(13): 1-13(in Chinese)) doi: 10.3901/JME.2017.13.001
    [3] Rus D, Tolley MT. Design, fabrication and control of soft robots. Nature, 2015, 521(7553): 467-475 doi: 10.1038/nature14543
    [4] Lee C, Kim M, Kim Y J, et al. Soft robot review. International Journal of Control, Automation and Systems, 2017, 15(1): 3-15
    [5] Wang H, Totaro M, Beccai L. Toward perceptive soft robots: progress and challenges. Advanced Science, 2018, 5: 1800541 doi: 10.1002/advs.201800541
    [6] 曹玉君, 尚建忠, 梁科山等. 软体机器人研究现状综述. 机械工程学报, 2012, 48(3): 25-33 (Cao Yujun, Shang Jianzhong, Liang Keshan, et al. Review of soft-bodied robots. Journal of Mechanical Engineering, 2012, 48(3): 25-33 (in Chinese) doi: 10.3901/JME.2012.03.025

    Cao Yujun, Shang Jianzhong, Liang Keshan, et al. Review of soft-bodied robots. Journal of Mechanical Engineering, 2012, 48(3): 25-33(in Chinese)) doi: 10.3901/JME.2012.03.025
    [7] 郭健, 潘彬彬, 崔维成等. 基于智能材料的深海执行器及海洋仿生机器人研究综述. 船舶力学, 2022, 26(2) (Guo Jian, Pan Binbin, Cui Weicheng, et al. Review of deep-sea actuators and marine bionic robots based on intelligent materials. Journal of Ship Mechanics, 2022, 26(2) (in Chinese)

    Guo Jian, Pan Binbin, Cui Weicheng, et al. Review of deep-sea actuators and marine bionic robots based on intelligent materials. Journal of Ship Mechanics, 2022, 26(2)(in Chinese)
    [8] Zhao W, Zhang Y, Wang N. Soft Robotics: research, challenges, and prospects. Journal of Robotics and Mechatronics, 2021, 33(1): 45-68 doi: 10.20965/jrm.2021.p0045
    [9] Liu K, Chen W, Yang W, et al. Review of the research progress in soft robots. Applied Sciences, 2023, 13: 120
    [10] Su H, Hou X, Zhang X, et al. Pneumatic soft robots: challenges and benefifits. Actuators, 2022, 11: 92 doi: 10.3390/act11030092
    [11] 赵宇豪, 赵慧, 谭代彬. 软体机器人流体驱动方式综述. 液压与气动, 2022, 45(4): 135-145 (Zhao Yuhao, Zhao Hui, Tan Daibin. Review of fluid driving methods in soft robot. Chinese Hydraulics &Pneumatics, 2022, 45(4): 135-145 (in Chinese)

    Zhao Yuhao, Zhao Hui, Tan Daibin. Review of fluid driving methods in soft robot. Chinese Hydraulics & Pneumatics, 2022, 45(4): 135-145(in Chinese))
    [12] Shepherd RF, IlievskI F, Choi W, et al. Multigait soft robot. Proceedings of the National Academy of Sciences, 2011, 108(51): 20400-20403 doi: 10.1073/pnas.1116564108
    [13] Oh N, Lee JG, Rodrigue H. Torsional pneumatic actuator based on pre-twisted pneumatic tubes for soft robotic manipulators. IEEE/ASME Transactions on Mechatronics, DOI: 10.1109/TMECH.2023.3262235
    [14] Tang Y, Chi Y, Sun J, et al. Leveraging elastic instabilities for amplified performance: Spine-inspired high-speed and high-force soft robots. Science Advances, 2020, 6(19): eaaz6912 doi: 10.1126/sciadv.aaz6912
    [15] Daerden F, Lefeber D. Pneumatic artificial muscles: actuators for robotics and automation. European Journal of Mechanical and Enviromental Engineering, 2002, 47(1): 11-22
    [16] Zou J, Feng M, Ding N, et al. Muscle-fiber array inspired, multiple-mode, pneumatic artificial muscles through planar design and one-step rolling fabrication. National Science Review, 2021, 8: nwab048 doi: 10.1093/nsr/nwab048
    [17] Arora A, Sarkar D, Kumar A, et al. Low-pressure pneumatic muscles: development, phenomenological modeling, and evaluation in assistive applications through sEMG analysis. Journal of Mechanical Science and Technology, 2022, 36(9): 4719-4733 doi: 10.1007/s12206-022-0832-0
    [18] Marchese AD, Onal CD, Rus D. Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators. Soft Robotics, 2014, 1(1): 75-87 doi: 10.1089/soro.2013.0009
    [19] Marchese AD, Katzschmann RK, Rus D. A recipe for soft fluidic elastomer robots. Soft Robotics, 2015, 2(1): 7-25 doi: 10.1089/soro.2014.0022
    [20] 方虹斌, 吴海平, 刘作林, 等. 折纸结构和折纸超材料动力学研究进展. 力学学报, 2022, 54(1): 1-38 (Fang Hongbin, Wu Haiping, Liu Zuolin, et al. Advances in the dynamics of origami structures and origami metamaterials. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 1-38 (in Chinese)

    Fang Hongbin, Wu Haiping, Liu Zuolin, et al. Advances in the dynamics of origami structures and origami metamaterials. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 1-38(in Chinese))
    [21] Meloni M, Cai J, Zhang Q, et al. Engineering origami: a comprehensive review of recent applications, design methods, and tools. Advanced Science, 2021, 8(13): 2000636 doi: 10.1002/advs.202000636
    [22] 刘杰, 徐依璐, 陈高锡, 等. 曲线折痕圆柱折纸力学超材料可定制压缩力学特性. 哈尔滨工程大学学报, 2022, 43(9): 1362-1369 (Liu Jie, Xu Yilu, Chen Gaoxi, et al. Curved-creased origami mechanical metamaterial with tailored compressive mechanical properties. Journal of Harbin Engineering University, 2022, 43(9): 1362-1369 (in Chinese)

    Liu Jie, Xu Yilu, Chen Gaoxi, et al. Curved-creased origami mechanical metamaterial with tailored compressive mechanical properties. Journal of Harbin Engineering University, 2022, 43(9): 1362-1369(in Chinese))
    [23] Chen Y, Peng R, You Z. Origami of thick panels. Science, 2015, 349(6246): 396-400 doi: 10.1126/science.aab2870
    [24] Pzez L, Agarwal G, Paik J. Design and analysis of a soft pneumatic actuator with origami shell reinforcement. Soft Robotics, 2016, 3(3): 109-119 doi: 10.1089/soro.2016.0023
    [25] Seyidoğlu B, Babu SPM, Rafsanjani A. Reconfigurable kirigami skins steer a soft robot//2023 IEEE International Conference on Soft Robotics (RoboSoft). IEEE, 2023: 1-6
    [26] Liu J, Yang Z, Wen G, et al. Contact mechanics model of wrinkling instability of dielectric elastomer membranes for anti-biofouling. Materials Today Communications, 2023, 34: 105216 doi: 10.1016/j.mtcomm.2022.105216
    [27] Xiao W, Hu D, Chen W, et al. Modeling and analysis of bending pneumaticartificial muscle with multi-degree of freedom. Smart Materials and Structures, 2021, 30: 095018 doi: 10.1088/1361-665X/ac1939
    [28] Runge G, Wiese M, Günther L, et al. A framework for the kinematic modeling of soft material robots combining finite element analysis and piecewise constant curvature kinematics//2017 3 rd International Conference on Control, Automation and Robotics (ICCAR). IEEE, 2017: 7-14
    [29] Webster RJ, Jones BA. Design and kinematic modeling of constant curvature continuum robots: a review. The International Journal of Robotics Research, 2010, 19(13): 1661-1683
    [30] Caasenbrood B, Pogromsky A, Nijmeijer H. Control-oriented models for hyperelastic soft robots through differential geometry of curves. Soft Robotics, 2022,DOI: 10.1089/soro.2021.0035
    [31] Wu Y, Yim J K, Liang J, et al. Insect-scale fast moving and ultrarobust soft robot. Science Robotics, 2019, 4(32): eaax1594 doi: 10.1126/scirobotics.aax1594
    [32] 文桂林, 刘杰, 陈梓杰, 等. 非线性连续体拓扑优化方法综述. 力学学报, 2022, 54(10): 2659-2675 (Wen Guilin, Liu Jie, Chen Zijie, et al. A survey of nonlinear continuum topology optimization methods. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2659-2675 (in Chinese) doi: 10.6052/0459-1879-22-179

    Wen Guilin, Liu Jie, Chen Zijie, et al. A survey of nonlinear continuum topology optimization methods. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2659-2675(in Chinese)) doi: 10.6052/0459-1879-22-179
  • 加载中
图(22)
计量
  • 文章访问数:  54
  • HTML全文浏览量:  13
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-18
  • 录用日期:  2023-09-20
  • 网络出版日期:  2023-09-15

目录

    /

    返回文章
    返回