[1] |
李铁风, 李国瑞, 梁艺鸣等. 软体机器人结构机理与驱动材料研究综述. 力学学报, 2016, 48(4): 756-766 (Li Tiefeng, Li Guorui, Liang Yiming, et al. Review of materials and structures in soft robotics. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 756-766 (in Chinese) doi: 10.6052/0459-1879-16-159Li Tiefeng, Li Guorui, Liang Yiming, et al. Review of materials and structures in soft robotics. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 756-766(in Chinese)) doi: 10.6052/0459-1879-16-159
|
[2] |
王田苗, 郝雨飞, 杨兴帮等. 软体机器人: 结构, 驱动, 传感与控制. 机械工程学报, 2017, 53(13): 1-13 (Wang Tianmiao, Hao Yufei, Yang Xingbang, et al. Soft robotics: structure, actuation, sensing and control. Journal of Mechanical Engineering, 2017, 53(13): 1-13 (in Chinese) doi: 10.3901/JME.2017.13.001Wang Tianmiao, Hao Yufei, Yang Xingbang, et al. Soft robotics: structure, actuation, sensing and control. Journal of Mechanical Engineering, 2017, 53(13): 1-13(in Chinese)) doi: 10.3901/JME.2017.13.001
|
[3] |
Rus D, Tolley MT. Design, fabrication and control of soft robots. Nature, 2015, 521(7553): 467-475 doi: 10.1038/nature14543
|
[4] |
Lee C, Kim M, Kim Y J, et al. Soft robot review. International Journal of Control, Automation and Systems, 2017, 15(1): 3-15
|
[5] |
Wang H, Totaro M, Beccai L. Toward perceptive soft robots: progress and challenges. Advanced Science, 2018, 5: 1800541 doi: 10.1002/advs.201800541
|
[6] |
曹玉君, 尚建忠, 梁科山等. 软体机器人研究现状综述. 机械工程学报, 2012, 48(3): 25-33 (Cao Yujun, Shang Jianzhong, Liang Keshan, et al. Review of soft-bodied robots. Journal of Mechanical Engineering, 2012, 48(3): 25-33 (in Chinese) doi: 10.3901/JME.2012.03.025Cao Yujun, Shang Jianzhong, Liang Keshan, et al. Review of soft-bodied robots. Journal of Mechanical Engineering, 2012, 48(3): 25-33(in Chinese)) doi: 10.3901/JME.2012.03.025
|
[7] |
郭健, 潘彬彬, 崔维成等. 基于智能材料的深海执行器及海洋仿生机器人研究综述. 船舶力学, 2022, 26(2) (Guo Jian, Pan Binbin, Cui Weicheng, et al. Review of deep-sea actuators and marine bionic robots based on intelligent materials. Journal of Ship Mechanics, 2022, 26(2) (in Chinese)Guo Jian, Pan Binbin, Cui Weicheng, et al. Review of deep-sea actuators and marine bionic robots based on intelligent materials. Journal of Ship Mechanics, 2022, 26(2)(in Chinese)
|
[8] |
Zhao W, Zhang Y, Wang N. Soft Robotics: research, challenges, and prospects. Journal of Robotics and Mechatronics, 2021, 33(1): 45-68 doi: 10.20965/jrm.2021.p0045
|
[9] |
Liu K, Chen W, Yang W, et al. Review of the research progress in soft robots. Applied Sciences, 2023, 13: 120
|
[10] |
Su H, Hou X, Zhang X, et al. Pneumatic soft robots: challenges and benefifits. Actuators, 2022, 11: 92 doi: 10.3390/act11030092
|
[11] |
赵宇豪, 赵慧, 谭代彬. 软体机器人流体驱动方式综述. 液压与气动, 2022, 45(4): 135-145 (Zhao Yuhao, Zhao Hui, Tan Daibin. Review of fluid driving methods in soft robot. Chinese Hydraulics &Pneumatics, 2022, 45(4): 135-145 (in Chinese)Zhao Yuhao, Zhao Hui, Tan Daibin. Review of fluid driving methods in soft robot. Chinese Hydraulics & Pneumatics, 2022, 45(4): 135-145(in Chinese))
|
[12] |
Shepherd RF, IlievskI F, Choi W, et al. Multigait soft robot. Proceedings of the National Academy of Sciences, 2011, 108(51): 20400-20403 doi: 10.1073/pnas.1116564108
|
[13] |
Oh N, Lee JG, Rodrigue H. Torsional pneumatic actuator based on pre-twisted pneumatic tubes for soft robotic manipulators. IEEE/ASME Transactions on Mechatronics, DOI: 10.1109/TMECH.2023.3262235
|
[14] |
Tang Y, Chi Y, Sun J, et al. Leveraging elastic instabilities for amplified performance: Spine-inspired high-speed and high-force soft robots. Science Advances, 2020, 6(19): eaaz6912 doi: 10.1126/sciadv.aaz6912
|
[15] |
Daerden F, Lefeber D. Pneumatic artificial muscles: actuators for robotics and automation. European Journal of Mechanical and Enviromental Engineering, 2002, 47(1): 11-22
|
[16] |
Zou J, Feng M, Ding N, et al. Muscle-fiber array inspired, multiple-mode, pneumatic artificial muscles through planar design and one-step rolling fabrication. National Science Review, 2021, 8: nwab048 doi: 10.1093/nsr/nwab048
|
[17] |
Arora A, Sarkar D, Kumar A, et al. Low-pressure pneumatic muscles: development, phenomenological modeling, and evaluation in assistive applications through sEMG analysis. Journal of Mechanical Science and Technology, 2022, 36(9): 4719-4733 doi: 10.1007/s12206-022-0832-0
|
[18] |
Marchese AD, Onal CD, Rus D. Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators. Soft Robotics, 2014, 1(1): 75-87 doi: 10.1089/soro.2013.0009
|
[19] |
Marchese AD, Katzschmann RK, Rus D. A recipe for soft fluidic elastomer robots. Soft Robotics, 2015, 2(1): 7-25 doi: 10.1089/soro.2014.0022
|
[20] |
方虹斌, 吴海平, 刘作林, 等. 折纸结构和折纸超材料动力学研究进展. 力学学报, 2022, 54(1): 1-38 (Fang Hongbin, Wu Haiping, Liu Zuolin, et al. Advances in the dynamics of origami structures and origami metamaterials. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 1-38 (in Chinese)Fang Hongbin, Wu Haiping, Liu Zuolin, et al. Advances in the dynamics of origami structures and origami metamaterials. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 1-38(in Chinese))
|
[21] |
Meloni M, Cai J, Zhang Q, et al. Engineering origami: a comprehensive review of recent applications, design methods, and tools. Advanced Science, 2021, 8(13): 2000636 doi: 10.1002/advs.202000636
|
[22] |
刘杰, 徐依璐, 陈高锡, 等. 曲线折痕圆柱折纸力学超材料可定制压缩力学特性. 哈尔滨工程大学学报, 2022, 43(9): 1362-1369 (Liu Jie, Xu Yilu, Chen Gaoxi, et al. Curved-creased origami mechanical metamaterial with tailored compressive mechanical properties. Journal of Harbin Engineering University, 2022, 43(9): 1362-1369 (in Chinese)Liu Jie, Xu Yilu, Chen Gaoxi, et al. Curved-creased origami mechanical metamaterial with tailored compressive mechanical properties. Journal of Harbin Engineering University, 2022, 43(9): 1362-1369(in Chinese))
|
[23] |
Chen Y, Peng R, You Z. Origami of thick panels. Science, 2015, 349(6246): 396-400 doi: 10.1126/science.aab2870
|
[24] |
Pzez L, Agarwal G, Paik J. Design and analysis of a soft pneumatic actuator with origami shell reinforcement. Soft Robotics, 2016, 3(3): 109-119 doi: 10.1089/soro.2016.0023
|
[25] |
Seyidoğlu B, Babu SPM, Rafsanjani A. Reconfigurable kirigami skins steer a soft robot//2023 IEEE International Conference on Soft Robotics (RoboSoft). IEEE, 2023: 1-6
|
[26] |
Liu J, Yang Z, Wen G, et al. Contact mechanics model of wrinkling instability of dielectric elastomer membranes for anti-biofouling. Materials Today Communications, 2023, 34: 105216 doi: 10.1016/j.mtcomm.2022.105216
|
[27] |
Xiao W, Hu D, Chen W, et al. Modeling and analysis of bending pneumaticartificial muscle with multi-degree of freedom. Smart Materials and Structures, 2021, 30: 095018 doi: 10.1088/1361-665X/ac1939
|
[28] |
Runge G, Wiese M, Günther L, et al. A framework for the kinematic modeling of soft material robots combining finite element analysis and piecewise constant curvature kinematics//2017 3 rd International Conference on Control, Automation and Robotics (ICCAR). IEEE, 2017: 7-14
|
[29] |
Webster RJ, Jones BA. Design and kinematic modeling of constant curvature continuum robots: a review. The International Journal of Robotics Research, 2010, 19(13): 1661-1683
|
[30] |
Caasenbrood B, Pogromsky A, Nijmeijer H. Control-oriented models for hyperelastic soft robots through differential geometry of curves. Soft Robotics, 2022,DOI: 10.1089/soro.2021.0035
|
[31] |
Wu Y, Yim J K, Liang J, et al. Insect-scale fast moving and ultrarobust soft robot. Science Robotics, 2019, 4(32): eaax1594 doi: 10.1126/scirobotics.aax1594
|
[32] |
文桂林, 刘杰, 陈梓杰, 等. 非线性连续体拓扑优化方法综述. 力学学报, 2022, 54(10): 2659-2675 (Wen Guilin, Liu Jie, Chen Zijie, et al. A survey of nonlinear continuum topology optimization methods. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2659-2675 (in Chinese) doi: 10.6052/0459-1879-22-179Wen Guilin, Liu Jie, Chen Zijie, et al. A survey of nonlinear continuum topology optimization methods. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2659-2675(in Chinese)) doi: 10.6052/0459-1879-22-179
|