EI、Scopus 收录
中文核心期刊
王凯, 周加喜, 蔡昌琦, 徐道临, 文桂林. 低频弹性波超材料的若干进展. 力学学报, 2022, 54(10): 2678-2694. DOI: 10.6052/0459-1879-22-108
引用本文: 王凯, 周加喜, 蔡昌琦, 徐道临, 文桂林. 低频弹性波超材料的若干进展. 力学学报, 2022, 54(10): 2678-2694. DOI: 10.6052/0459-1879-22-108
Wang Kai, Zhou Jiaxi, Cai Changqi, Xu Daolin, Wen Guilin. Review of low-frequency elastic wave metamaterials. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2678-2694. DOI: 10.6052/0459-1879-22-108
Citation: Wang Kai, Zhou Jiaxi, Cai Changqi, Xu Daolin, Wen Guilin. Review of low-frequency elastic wave metamaterials. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2678-2694. DOI: 10.6052/0459-1879-22-108

低频弹性波超材料的若干进展

REVIEW OF LOW-FREQUENCY ELASTIC WAVE METAMATERIALS

  • 摘要: 超材料是一类新兴的具有超常物理性质的人造周期/拟周期材料, 能够改变电磁波、声波以及弹性波等在介质中的传播特性. 因在航天、国防以及民用科学等方面的巨大应用潜力, 超材料自被提出后便受到极大的关注并引发研究热潮. 弹性波超材料是超材料的一种, 能够基于弹性波与超材料结构的相互耦合作用实现对弹性波的操控. 带隙是评估弹性波超材料实现弹性波操控的重要工具, 其性质与超材料的材料参数、晶格常数以及局域振子的固有频率相关. 受制于超材料的承载能力、外观尺寸以及局域振子结构等因素, 利用传统超材料开启低频(约100 Hz)弹性波带隙依然存在较大困难. 文章首先简要介绍超材料开启弹性波带隙的基本原理, 然后从低频弹性波超材料基本结构与低频带隙实现方法、低频带隙优化与调控策略、低频带隙潜在应用等三个方面详细总结低频弹性波超材料的研究工作. 其中, 低频带隙超材料的基本结构主要包括布拉格散射型超材料、传统局域共振型超材料以及准零刚度局域共振超材料. 文章通过总结低频弹性波超材料的研究进展, 分析了目前研究中的不足并对未来低频弹性波的研究方向进行了展望.

     

    Abstract: Metamaterial, a type of burgeoning man-made material/structure, possesses a periodic/quasi-periodic structure and is able to change the transmission properties of the electromagnetic wave, the acoustic wave and the elastic wave. Due to its enormous potentiality in the field of the spaceflight, national defence and civilian, the metamaterial attracted great interest, inspired a new wave of research and obtained consecutive important achievement since it was proposed. Elastic wave metamaterial is a kind of metamaterial which is capable of realizing the attenuation and manipulation of the elastic wave on the basis of the interaction of the elastic wave and the periodic/ quasi-periodic structure. Band structure design is an important tool for the elastic wave metamaterial to execute the wave manipulation and attenuation. The location, width and wave suppression performance of the frequency band are related to the nature of materials, the lattice constant of the metamaterial, and the resonant frequency of the local resonator. Because of the limitations such as the carrying capacity, the overall size, and the structure of the local resonator, it is still difficult to obtain an elastic wave band gap in the frequency range around 100 Hz through the conventional metamaterials. This review introduces the fundamental principle of the metamaterial for opening elastic wave band gaps firstly, and then elaborates the low-frequency elastic wave metamaterial from three aspects: the fundamental configuration of the metamaterial, the low-frequency band gap optimization and tuning, and some potential applications. The fundamental configurations of low-frequency elastic wave metamaterials mainly include three aspects: Bragg scattering metamaterials, conventional local resonant metamaterials and quasi-zero-stiffness local resonant metamaterials. The low-frequency band tunability achieved by both the passive and active approaches detailed as well. This review summarizes the current knowledge of the low-frequency elastic wave metamaterial, analyzes the inadequacies and the advantages in current research, and outlines future research prospects.

     

/

返回文章
返回