EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多层平行裂隙型多孔介质通道内流体流动传热特性

李琪 王兆宇 胡鹏飞

李琪, 王兆宇, 胡鹏飞. 多层平行裂隙型多孔介质通道内流体流动传热特性. 力学学报, 待出版 doi: 10.6052/0459-1879-22-285
引用本文: 李琪, 王兆宇, 胡鹏飞. 多层平行裂隙型多孔介质通道内流体流动传热特性. 力学学报, 待出版 doi: 10.6052/0459-1879-22-285
Li Qi, Wang Zhaoyu, Hu Pengfei. Fluid flow and heat transfer characteristics in the multilayered-parallel fractured porous channel. Chinese Journal of Theoretical and Applied Mechanics, in press doi: 10.6052/0459-1879-22-285
Citation: Li Qi, Wang Zhaoyu, Hu Pengfei. Fluid flow and heat transfer characteristics in the multilayered-parallel fractured porous channel. Chinese Journal of Theoretical and Applied Mechanics, in press doi: 10.6052/0459-1879-22-285

多层平行裂隙型多孔介质通道内流体流动传热特性

doi: 10.6052/0459-1879-22-285
基金项目: 国家自然基金项目(51906034); 吉林省科技发展计划项目(20210101086JC); 吉林市科技创新发展计划项目(20210103087)
详细信息
    作者简介:

    李琪(1986—), 女, 博士, 副教授, 强化传热传质、多孔介质热质输运

    胡鹏飞(1985—), 男, 博士, 副教授, 多相流动与传热. hupengfei@neepu.edu.cn

  • 中图分类号: O35

FLUID FLOW AND HEAT TRANSFER CHARACTERISTICS IN THE MULTILAYERED-PARALLEL FRACTURED POROUS CHANNEL

  • 摘要: 基于Brinkman-extended Darcy模型和局部热平衡模型, 对多层平行裂隙型多孔介质通道内的流动传热特性进行研究. 获得了多层平行裂隙型多孔介质通道内各区域的速度场、温度场、摩擦系数及努塞尔数解析解, 并分析了裂隙层数、达西数、空心率、有效热导率之比等对通道内流动传热特性的影响. 结果表明: 达西数较小时, 通道多孔介质层内会出现不随高度变化的达西速度, 此达西速度会随裂隙层数的增加而增大, 但却不受各裂隙层下多孔介质层位置变化的影响. 增加裂隙层数会减弱空心率对压降的影响, 会使通道内流体压降升高, 但升高程度会逐渐降低. 增大热导率之比或减小空心率会使多裂隙通道内出现阶梯式温度分布, 而在较小热导率之比或较大空心率时多裂隙情况下的温度分布曲线会趋于一致. 此外, 当热导率之比较小时, 多层裂隙通道内的传热效果在任何空心率下都要优于单裂隙情况, 当热导率之比较大时, 存在临界空心率使各裂隙层数通道内的传热效果相同, 且多裂隙通道内继续增加裂隙层数对传热强度影响不大.

     

  • 图  1  多层平行裂隙型多孔介质通道结构

    Figure  1.  Porous channel structure with multilayer parallel fractures

    图  2  本文计算结果与文献[14]结果比较

    Figure  2.  Comparison of the calculation results of this paper with the results of the literature[14] (a) validation of velocity field in the single fractured porous channel (b) validation of temperature field in the single fractured porous channel

    2  本文计算结果与文献[14]结果比较(续)

    2.  Comparison of the calculation results of this paper with the results of the literature[14] (a) validation of velocity field in the single fractured porous channel (b) validation of temperature field in the single fractured porous channel (continued)

    图  3  裂隙层数对速度场的影响

    Figure  3.  Effect of the number of fracture layers on velocity distribution

    4  孔隙率对速度分布的影响

    4.  Effect of porosity on velocity distribution

    4  孔隙率对速度分布的影响(续)

    4.  Effect of porosity on velocity distribution (continued)

    图  5  空心率对速度分布的影响

    Figure  5.  Influence of hollow ratio on velocity distribution

    图  6  不同裂隙层数和达西数下压降随空心率变化

    Figure  6.  Variation of pressure drop with hollow ratio under different fracture layer numbers and Darcy numbers

    图  7  Da = 10-3, K = 10时, 不同空心率下裂隙层数对温度分布的影响

    Figure  7.  Influence of the number of fracture layers on the temperature distribution under different hollow ratios at Da = 10-3, K = 10

    图  8  不同热导率之比时, 裂隙层数对温度分布的影响

    Figure  8.  Influence of the number of fracture layers on the temperature distribution under different thermal conductivity ratios

    图  9  Nusselt数与热导率之比的关系

    Figure  9.  Relationship between the Nusselt number and the thermal conductivity ratio

    图  10  Nusselt数与空心率的关系

    Figure  10.  Relationship between the Nusselt number and the hollow rate

    表  1  空心率SSn的关系

    Table  1.   The relationship between hollow ratio S and Sn

    n = 1n = 2n = 3n = 4n = 5
    S1S(1-S)/2S/3(1-S)/5S/5
    S2(1 + S)/2(3-S)/6(2 + 3S)/10(5-2S)/15
    S3(1 + S)/2(6-S)/10(5 + 4S)/15
    S4(3 + 2S)/5(10-S)/15
    S5(2 + S)/3
    下载: 导出CSV

    表  2  裂隙层速度场系数Lj表达式

    Table  2.   Coefficient expressions Lj of velocity field in fracture layers

    $ {\text{L}}_{\text{1}} $$ {L}_{2} $$ {L}_{3} $$ {L}_{4} $$ {L}_{5} $$ {L}_{6} $
    n = 1$ 0 $$ \dfrac{{S}^{2}}{2} + {U}_{i} $
    n = 2$ \dfrac{{S}_{1}^{2}-{S}_{2}^{2} + 2({U}_{i1}-{U}_{i2})}{({S}_{1}-{S}_{2})} $$ \dfrac{{S}_{1}{S}_{2}\left({S}_{2}-{S}_{1}\right) + 2({U}_{i2}{S}_{1}-{U}_{i1}{S}_{2})}{2\left({S}_{1}-{S}_{2}\right)} $
    n = 3$ 0 $$ \dfrac{{S}_{1}^{2}}{2} + {U}_{i1} $$ \dfrac{2({U}_{i3}-{U}_{i2}) + {S}_{3}^{2}-{S}_{2}^{2}}{{S}_{3}-{S}_{2}} $$ {U}_{i3}-\dfrac{{S}_{2}{S}_{3}}{2}-\dfrac{{S}_{3}({U}_{i3}-{U}_{i2})}{{S}_{3}-{S}_{2}} $
    n = 4$ \dfrac{{S}_{1}^{2}-{S}_{2}^{2} + 2({U}_{i1}-{U}_{i2})}{({S}_{1}-{S}_{2})} $$ \dfrac{{S}_{1}{S}_{2}\left({S}_{2}-{S}_{1}\right) + 2({U}_{i2}\mathrm{*}{S}_{1}-{U}_{i1}\mathrm{*}{S}_{2})}{2\left({S}_{1}-{S}_{2}\right)} $$ \dfrac{2({U}_{i4}-{U}_{i3}) + {S}_{4}^{2}-{S}_{3}^{2}}{{S}_{4}-{S}_{3}} $$ {U}_{i3}-\dfrac{{S}_{3}{S}_{4}}{2}-\dfrac{{S}_{3}({U}_{i4}-{U}_{i3})}{({S}_{4}-{S}_{3})} $
    n = 5$ 0 $$ \dfrac{{S}_{1}^{2}}{2} + {U}_{i1} $$ \dfrac{2({U}_{i3}-{U}_{i2}) + {S}_{3}^{2}-{S}_{2}^{2}}{{S}_{3}-{S}_{2}} $$ {U}_{i3}-\dfrac{{S}_{2}{S}_{3}}{2}-\dfrac{{S}_{3}({U}_{i3}-{U}_{i2})}{{S}_{3}-{S}_{2}} $$ \dfrac{{S}_{4} + {S}_{5}}{2} + \dfrac{{U}_{i5}-{U}_{i4}}{{S}_{5}-{S}_{4}} $$ {U}_{i4}-\dfrac{{S}_{4}\mathrm{*}{S}_{5}}{2}-\dfrac{{S}_{4}({U}_{i5}-{U}_{i4})}{{S}_{5}-{S}_{4}} $
    下载: 导出CSV

    表  3  多孔介质层速度场系数Pk表达式

    Table  3.   Coefficient expressions Pk of velocity field in porous layers

    $ {P}_{1} $$ {P}_{2} $$ {P}_{3} $$ {P}_{4} $$ {P}_{5} $$ {P}_{6} $
    n = 1$ \dfrac{Da{\text{(}\text{e}}^{NS}-{\text{e}}^{N}) + {U}_{i}{\text{e}}^{N}}{({\text{e}}^{N(1-S)}-{\text{e}}^{N(S-1)})} $$ -\dfrac{Da{\text{(e}}^{-NS}-{\text{e}}^{-N}) + {U}_{i}{\text{e}}^{-N}}{({\text{e}}^{N(1-S)}-{\text{e}}^{N(S-1)})} $
    n = 2$ \dfrac{{U}_{i1}-Da}{({\text{e}}^{N{S}_{1}} + {\text{e}}^{-N{S}_{1}})} $$ \dfrac{{U}_{i1}-Da}{({\text{e}}^{N{S}_{1}} + {\text{e}}^{-N{S}_{1}})} $$\dfrac{\begin{array}{c}Da{ {\rm{e} }^{N\left( { {S_2} + 1} \right)} }{ {\rm{e} }^{N{S_2} } } + \\{ {\rm{e} }^N}({U_{i2} } - Da)\end{array} }{ {\left( { { {\rm{e} }^{2N} }{ { - } }{ {\rm{e} }^{2N{S_2} } } } \right)} }$$ -\dfrac{Da{\text{e}}^{N} + {\text{e}}^{N{S}_{2}}\mathrm{*}({U}_{i2}-Da)}{({\text{e}}^{2 N}-{\text{e}}^{2 N{S}_{2}})} $
    n = 3$\dfrac{\begin{array}{c}[{U}_{i1}{\text{e} }^{N\left({S}_{2}-{S}_{1}\right)}-{U}_{i2}-\\ Da{\text{e} }^{N\left({S}_{2}-{S}_{1}\right)-1}]\end{array} }{\left({\text{e} }^{N\left({S}_{2}-2{S}_{1}\right)}-{\text{e} }^{-N{S}_{2} }\right)}$$\dfrac{\begin{array}{c}\left[\right({U}_{i1}-Da{\text{)e} }^{N\left({S}_{1}-{S}_{2}\right)}+\\ Da-{U}_{i2}]\end{array} }{ {\text{e} }^{N\left(2{S}_{1}-{S}_{2}\right)}{\text{-e} }^{N{S}_{2} } }$$ \dfrac{Da{\text{(1-e}}^{N\left({S}_{3}-1\right)})-{U}_{i3}}{({\text{e}}^{N\left({S}_{3}-2\right)}-{\text{e}}^{-N{S}_{3}})} $$ \dfrac{{\text{Da(1-e}}^{N\left(1-{S}_{3}\right)})-{U}_{i3}}{({\text{e}}^{N\left(2-{S}_{3}\right)}-{\text{e}}^{N{S}_{3}})} $
    n = 4$ \dfrac{{U}_{i1}-Da}{({\text{e}}^{N{S}_{1}} + {\text{e}}^{-N{S}_{1}})} $$ \dfrac{{U}_{i1}-Da}{({\text{e}}^{N{S}_{1}} + {\text{e}}^{-N{S}_{1}})} $$\dfrac{\begin{array}{c} {U_{i3}} - {U_{i2}}{e^{N\left( {{S_3} - {S_2}} \right)}} - \\ Da(1 - {e^{N\left( {{S_3} - {S_2}} \right)}}) \end{array}}{{{e^{ - N{S_3}}} - {e^{N\left( {{S_3} - 2{S_2}} \right)}}}}$$\dfrac{\begin{array}{c}[{U}_{i3}-{U}_{i2}{e}^{N\left({S}_{2}-{S}_{3}\right)}-\\ Da(1-{e}^{N\left({S}_{2}-{S}_{3}\right)})]\end{array} }{ {e}^{N{S}_{3} }-{e}^{N\left(2{S}_{2}\text{-}{S}_{3}\right)} }$$ \dfrac{-{U}_{i4}-Da({e}^{N\left({S}_{4}-1\right)}-1)}{{e}^{N({S}_{4}-2)}-{e}^{-N{S}_{4}}} $$ \dfrac{-{U}_{i4}-Da({e}^{N\left(1-{S}_{4}\right)}-1)}{{e}^{N(2-{S}_{4})}-{e}^{N{S}_{4}}} $
    n = 5$\dfrac{\begin{array}{c}[{U}_{i1}{e}^{N\left({S}_{2}-{S}_{1}\right)}-{U}_{i2}-\\ Da\left({e}^{N\left({S}_{2}-{S}_{1}\right)}\text{-1}\right)]\end{array} }{ {e}^{N\left({S}_{2}-2{S}_{1}\right)}-{e}^{-N{S}_{2} } }$$\dfrac{\begin{array}{c}\left[\right({U}_{i1}-Da{\text{)e} }^{N\left({S}_{1}-{S}_{2}\right)}+\\ Da-{U}_{i2}]\end{array} }{ {\text{e} }^{N\left(2{S}_{1}-{S}_{2}\right)}{\text{-e} }^{N{S}_{2} } }$$\dfrac{\begin{array}{c} {U_{i4}}{e^{N\left( {{S_3} - {S_4}} \right)}} - {U_{i3}} + \\ Da\left( {{e^{N\left( {{S_3} - {S_4}} \right)}}{{ - 1}}} \right) \end{array}}{{{e^{N\left( {{S_3} - 2{S_4}} \right)}} - {e^{ - N{S_3}}}}}$$\dfrac{\begin{array}{c}[{U}_{i4}{e}^{N\left({S}_{4}-{S}_{3}\right)}-{U}_{i3}-\\ Da({e}^{N\left({S}_{4}-{S}_{3}\right)}-1)]\end{array} }{ {e}^{N\left(2{S}_{4}-{S}_{3}\right)}-{e}^{N{S}_{3} } }$$ \dfrac{-{U}_{i5}-Da({e}^{N\left({S}_{5}-1\right)}-1)}{{e}^{N({S}_{5}-2)}-{e}^{-N{S}_{5}}} $$ \dfrac{-{U}_{i5}-Da({e}^{N\left(1-{S}_{5}\right)}-1)}{{e}^{N(2-{S}_{5})}-{e}^{N{S}_{5}}} $
    下载: 导出CSV

    表  4  裂隙层温度场系数Cj表达式

    Table  4.   Coefficient expressions Cj of temperature field in fracture layers

    $ {C}_{1} $$ {C}_{2} $$ {C}_{3} $$ {C}_{4} $$ {C}_{5} $$ {C}_{6} $
    n = 1$ 0 $$ \dfrac{\mathrm{F}{S}_{1}^{4}}{12}-\dfrac{\mathrm{F}{L}_{1}{S}_{1}^{3}}{6}-\mathrm{F}{L}_{2}{S}_{1}^{2} + {T}_{i1} $
    n = 2$ \dfrac{\begin{array}{c}[F\left({S}_{1}^{4}-{S}_{2}^{4}\right) + 2 F{L}_{1}\left({S}_{2}^{3}-{S}_{1}^{3}\right) + \\ 12 F{L}_{2}({S}_{2}^{2}-{S}_{1}^{2}) + 12({T}_{i1}-{T}_{i2})]\end{array}}{12\left({S}_{1}-{S}_{2}\right)} $$ \dfrac{\begin{array}{c}[F{S}_{1}{S}_{2}\left({S}_{2}^{3}-{S}_{1}^{3}\right) + 2 F{L}_{1}{S}_{1}{S}_{2}\left({S}_{1}^{2}-{S}_{2}^{2}\right) + \\ 12 F{L}_{2}{S}_{1}{S}_{2}({S}_{1}-{S}_{2}) + 12({T}_{i2}{S}_{1}-{T}_{i1}{S}_{2})]\end{array}}{12\left({S}_{1}-{S}_{2}\right)} $
    n = 3$ 0 $$ \dfrac{\mathrm{F}{S}_{1}^{4}}{12}-\dfrac{\mathrm{F}{L}_{1}{S}_{1}^{3}}{6}-\mathrm{F}{L}_{2}{S}_{1}^{2} + {T}_{i1} $$ \dfrac{\begin{array}{c}[F\left({S}_{2}^{4}-{S}_{3}^{4}\right) + 2 F{L}_{3}\left({S}_{3}^{3}-{S}_{2}^{3}\right) + \\ 12 F{L}_{4}({S}_{3}^{2}-{S}_{2}^{2}) + 12({T}_{i2}-{T}_{i3})]\end{array}}{12\left({S}_{2}-{S}_{3}\right)} $$ \dfrac{\begin{array}{c}[F{S}_{2}{S}_{3}\left({S}_{3}^{3}-{S}_{2}^{3}\right) + 2 F{L}_{3}{S}_{2}{S}_{3}\left({S}_{2}^{2}-{S}_{3}^{2}\right) + \\ 12 F{L}_{4}{S}_{2}{S}_{3}({S}_{2}-{S}_{3}) + 12({T}_{i3}{S}_{2}-{T}_{i2}{S}_{3})]\end{array}}{12\left({S}_{2}-{S}_{3}\right)} $
    n = 4$ \dfrac{\begin{array}{c}[F\left({S}_{1}^{4}-{S}_{2}^{4}\right) + 2 F{L}_{1}\left({S}_{2}^{3}-{S}_{1}^{3}\right) + \\ 12 F{L}_{2}({S}_{2}^{2}-{S}_{1}^{2}) + 12({T}_{i1}-{T}_{i2})]\end{array}}{12\left({S}_{1}-{S}_{2}\right)} $$ \dfrac{\begin{array}{c}[F{S}_{1}{S}_{2}\left({S}_{2}^{3}-{S}_{1}^{3}\right) + 2 F{L}_{1}{S}_{1}{S}_{2}\left({S}_{1}^{2}-{S}_{2}^{2}\right) + \\ 12 F{L}_{2}{S}_{1}{S}_{2}({S}_{1}-{S}_{2}) + 12({T}_{i2}{S}_{1}-{T}_{i1}{S}_{2})]\end{array}}{12\left({S}_{1}-{S}_{2}\right)} $$ \dfrac{\begin{array}{c}[F\left({S}_{3}^{4}-{S}_{4}^{4}\right) + 2 F{L}_{3}\left({S}_{4}^{3}-{S}_{3}^{3}\right) + \\ 12 F{L}_{4}({S}_{4}^{2}-{S}_{3}^{2}) + 12({T}_{i3}-{T}_{i4})]\end{array}}{12\left({S}_{3}-{S}_{4}\right)} $$ \dfrac{\begin{array}{c}[F{S}_{3}{S}_{4}\left({S}_{4}^{3}-{S}_{3}^{3}\right) + 2 F{L}_{3}{S}_{3}{S}_{4}\left({S}_{3}^{2}-{S}_{4}^{2}\right) + \\ 12 F{L}_{4}{S}_{3}{S}_{4}({S}_{3}-{S}_{4}) + 12({T}_{i4}{S}_{3}-{T}_{i3}{S}_{4})]\end{array}}{12\left({S}_{3}-{S}_{4}\right)} $
    n = 5$ 0 $$ \dfrac{\mathrm{F}{S}_{1}^{4}}{12}-\dfrac{\mathrm{F}{L}_{1}{S}_{1}^{3}}{6}-\mathrm{F}{L}_{2}{S}_{1}^{2} + {T}_{i1} $$ \dfrac{\begin{array}{c}[F\left({S}_{2}^{4}-{S}_{3}^{4}\right) + 2 F{L}_{3}\left({S}_{3}^{3}-{S}_{2}^{3}\right) + \\ 12 F{L}_{4}({S}_{3}^{2}-{S}_{2}^{2}) + 12({T}_{i2}-{T}_{i3})]\end{array}}{12\left({S}_{2}-{S}_{3}\right)} $$ \dfrac{\begin{array}{c}[F{S}_{2}{S}_{3}\left({S}_{3}^{3}-{S}_{2}^{3}\right) + 2 F{L}_{3}{S}_{2}{S}_{3}\left({S}_{2}^{2}-{S}_{3}^{2}\right) + \\ 12 F{L}_{4}{S}_{2}{S}_{3}({S}_{2}-{S}_{3}) + 12({T}_{i3}{S}_{2}-{T}_{i2}{S}_{3})]\end{array}}{12\left({S}_{2}-{S}_{3}\right)} $$ \dfrac{\begin{array}{c}[F\left({S}_{4}^{4}-{S}_{3}^{4}\right) + 2 F{L}_{5}\left({S}_{5}^{3}-{S}_{4}^{3}\right) + \\ 12 F{L}_{6}({S}_{5}^{2}-{S}_{4}^{2}) + 12({T}_{i4}-{T}_{i5})]\end{array}}{12\left({S}_{4}-{S}_{5}\right)} $$ \dfrac{\begin{array}{c}[F{S}_{4}{S}_{5}\left({S}_{5}^{3}-{S}_{4}^{3}\right) + 2 F{L}_{5}{S}_{4}{S}_{5}\left({S}_{4}^{2}-{S}_{5}^{2}\right) + \\ 12 F{L}_{6}{S}_{4}{S}_{5}({S}_{4}-{S}_{5}) + 12({T}_{i5}{S}_{4}-{T}_{i4}{S}_{5})]\end{array}}{12\left({S}_{4}-{S}_{5}\right)} $
    下载: 导出CSV

    表  5  多孔介质层温度场系数Zk表达式

    Table  5.   Coefficient expressions Zk of temperature field in porous layers

    $ {Z}_{1} $$ {Z}_{2} $$ {Z}_{3} $$ {Z}_{4} $$ {Z}_{5} $$ {Z}_{6} $
    n = 1$ \dfrac{\begin{array}{c}[Da{\mathrm{N}}^{2}\left(1-{\mathrm{S}}_{1}^{2}\right) + 2{\mathrm{P}}_{2}\left({\mathrm{e}}^{\mathrm{N}}-{\mathrm{e}}^{\mathrm{N}{\mathrm{S}}_{1}}\right)\\ + 2{\mathrm{P}}_{1}({\mathrm{e}}^{-\mathrm{N}}-{\mathrm{e}}^{-\mathrm{N}{\mathrm{S}}_{1}}) + 2 L{\mathrm{N}}^{2}{T}_{i}]\end{array}}{2\mathrm{L}{\mathrm{N}}^{2}\left({S}_{1}-1\right)} $$ -\dfrac{\begin{array}{c}[Da{\mathrm{N}}^{2}{\mathrm{S}}_{1}\left(1-{\mathrm{S}}_{1}\right) + 2{\mathrm{P}}_{2}({\mathrm{S}}_{1}{\mathrm{e}}^{\mathrm{N}}-{\mathrm{e}}^{\mathrm{N}{\mathrm{S}}_{1}})\\ + 2{\mathrm{P}}_{1}({\mathrm{S}}_{1}{\mathrm{e}}^{-\mathrm{N}}-{\mathrm{e}}^{-\mathrm{N}{\mathrm{S}}_{1}}) + 2 L{\mathrm{N}}^{2}{T}_{i}]\end{array}}{2\mathrm{L}{\mathrm{N}}^{2}\left({S}_{1}-1\right)} $
    n = 2$ \dfrac{\mathrm{P}1-\mathrm{P}2}{\mathrm{L}\mathrm{N}} $$ -\dfrac{\begin{array}{c}[2\left({P}_{1}{e}^{-N{S}_{1}} + {P}_{2}{e}^{N{S}_{1}}\right)-2 L{N}^{2}{T}_{i1}\\ + 2 N{S}_{1}\left({P}_{1}-{P}_{2}\right) + Da{N}^{2}{S}_{1}^{2}]\end{array}}{2\mathrm{L}{N}^{2}} $$ \dfrac{\begin{array}{c}[2{P}_{4}\left({e}^{N}-{e}^{N{S}_{2}}\right) + Da{N}^{2}{(1-S}_{2}^{2})\\ + 2{P}_{3}\left({e}^{-N}-{e}^{-N{S}_{2}}\right) + 2 L{N}^{2}{T}_{i2}]\end{array}}{2\mathrm{L}{N}^{2}\left({S}_{2}-1\right)} $$ -\dfrac{\begin{array}{c}[2{P}_{4}\left({S}_{2}{e}^{N}-{e}^{N{S}_{2}}\right) + Da{N}^{2}{({S}_{2}-S}_{2}^{2})\\ + 2{P}_{3}\left({S}_{2}{e}^{-N}-{e}^{-N{S}_{2}}\right) + 2 L{N}^{2}{T}_{i2}]\end{array}}{2\mathrm{L}{N}^{2}\left({S}_{2}-1\right)} $
    n = 3$\dfrac{{\begin{array}{*{20}{c}}{ - [Da{{\rm{N}}^2}\left( {S_1^2 - S_2^2} \right) + 2{P_2}\left( {{e^{N{{\rm{S}}_1}}} - {e^{N{{\rm{S}}_2}}}} \right) + }\\\begin{array}{l}2{P_1}({e^{ - N{{\rm{S}}_1}}} - {e^{ - N{{\rm{S}}_2}}}) + \\2L{{\rm{N}}^2}({T_{i2}} - {T_{i1}})]\end{array}\end{array}}}{{2{\rm{L}}{{\rm{N}}^2}\left( {{S_1} - {{\rm{S}}_2}} \right)}}$$\dfrac{{\begin{array}{*{20}{c}}{ - [Da{{\rm{N}}^2}{{\rm{S}}_1}{{\rm{S}}_2}\left( {{{\rm{S}}_2} - {{\rm{S}}_1}} \right) + 2{P_2}\left( {{{\rm{S}}_1}{e^{N{{\rm{S}}_2}}} - {{\rm{S}}_2}{e^{N{{\rm{S}}_1}}}} \right) + }\\\begin{array}{l}2{P_1}({{\rm{S}}_1}{e^{ - N{{\rm{S}}_2}}} - {{\rm{S}}_2}{e^{ - N{{\rm{S}}_1}}}) + \\2L{{\rm{N}}^2}({{\rm{S}}_2}{T_{i1}} - {{\rm{S}}_1}{T_{i2}})]\end{array}\end{array}}}{{2{\rm{L}}{{\rm{N}}^2}\left( {{S_1} - {{\rm{S}}_2}} \right)}}$$ \dfrac{\begin{array}{c}[2{P}_{4}\left({e}^{N}-{e}^{N{S}_{3}}\right) + Da{N}^{2}{(1-S}_{3}^{2})\\ + 2{P}_{3}\left({e}^{-N}-{e}^{-N{S}_{3}}\right) + 2 L{N}^{2}{T}_{i3}]\end{array}}{2\mathrm{L}{N}^{2}\left({S}_{3}-1\right)} $$ -\dfrac{\begin{array}{c}[2{P}_{4}\left({S}_{3}{e}^{N}-{e}^{N{S}_{3}}\right) + Da{N}^{2}{({S}_{3}-S}_{3}^{2})\\ + 2{P}_{3}\left({S}_{3}{e}^{-N}-{e}^{-N{S}_{3}}\right) + 2 L{N}^{2}{T}_{i3}]\end{array}}{2\mathrm{L}{N}^{2}\left({S}_{3}-1\right)} $
    n = 4$ \dfrac{\mathrm{P}1-\mathrm{P}2}{\mathrm{L}\mathrm{N}} $$ -\dfrac{\begin{array}{c}[2\left({P}_{1}{e}^{-N{S}_{1}} + {P}_{2}{e}^{N{S}_{1}}\right)-2 L{N}^{2}{T}_{i1}\\ + 2 N{S}_{1}\left({P}_{1}-{P}_{2}\right) + Da{N}^{2}{S}_{1}^{2}]\end{array}}{2\mathrm{L}{N}^{2}} $$ \dfrac{\begin{array}{c}-\left[2{P}_{4}\left({e}^{N{S}_{2}}-{e}^{N{S}_{3}}\right) + \mathrm{D}\mathrm{a}{N}^{2}{(S}_{2}^{2}{-S}_{3}^{2}\right) + \\ 2{P}_{3}\left({e}^{-N{S}_{2}}-{e}^{-N{S}_{3}}\right) + 2 L{N}^{2}({T}_{i3}-{T}_{i2})]\end{array}}{2\mathrm{L}{N}^{2}\left({S}_{2}-{S}_{3}\right)} $$\dfrac{{\begin{array}{*{20}{c}}\begin{array}{l} - \left[ {2{P_4}\left( {{S_2}{e^{N{S_3}}} - {S_3}{e^{N{S_2}}}} \right)} \right. + \\\left. {{\rm{Da}}{N^2}({S_2}S_3^2 - {S_3}S_2^2} \right) + \end{array}\\\begin{array}{l}2{P_3}\left( {{S_2}{e^{ - N{S_3}}} - {S_3}{e^{ - N{S_2}}}} \right) + \\2L{N^2}({S_3}{T_{i2}} - {S_2}{T_{i3}})]\end{array}\end{array}}}{{2{\rm{L}}{N^2}\left( {{S_2} - {S_3}} \right)}}$$\frac{{\begin{array}{*{20}{c}}\begin{array}{l}[2{P_6}\left( {{e^N} - {e^{N{S_4}}}} \right) + \\Da{N^2}(1 - S_4^2) + \end{array}\\\begin{array}{l}2{P_3}\left( {{e^{ - N}} - {e^{ - N{S_4}}}} \right) + \\2L{N^2}{T_{i4}}]\end{array}\end{array}}}{{2{\rm{L}}{N^2}\left( {{S_4} - 1} \right)}}$$\dfrac{ {\begin{array}{*{20}{c} }\begin{array}{l} - [2{P_6}\left( { {S_4}{e^N} - {e^{N{S_4} } } } \right) + \\Da{N^2}({S_4} - S_4^2) + \end{array}\\\begin{array}{l}2{P_5}\left( { {S_4}{e^{ - N} } - {e^{ - N{S_4} } } } \right) + \\2L{N^2}{T_{i4} }]\end{array}\end{array} } }{ {2{\rm{L} }{N^2}\left( { {S_4} - 1} \right)} }$
    n = 5$\dfrac{{\begin{array}{*{20}{c}}{ - [Da{{\rm{N}}^2}\left( {S_1^2 - S_2^2} \right) + 2{P_2}\left( {{e^{N{{\rm{S}}_1}}} - {e^{N{{\rm{S}}_2}}}} \right) + }\\\begin{array}{l}2{P_1}({e^{ - N{{\rm{S}}_1}}} - {e^{ - N{{\rm{S}}_2}}}) + \\2L{{\rm{N}}^2}({T_{i2}} - {T_{i1}})]\end{array}\end{array}}}{{2{\rm{L}}{{\rm{N}}^2}\left( {{S_1} - {{\rm{S}}_2}} \right)}}$$ \dfrac{\begin{array}{c}-[Da{\mathrm{N}}^{2}{\mathrm{S}}_{1}{\mathrm{S}}_{2}\left({\mathrm{S}}_{2}-{\mathrm{S}}_{1}\right) + 2{P}_{2}\left({\mathrm{S}}_{1}{e}^{N{\mathrm{S}}_{2}}-{\mathrm{S}}_{2}{e}^{N{\mathrm{S}}_{1}}\right) + \\ 2{P}_{1}({\mathrm{S}}_{1}{e}^{-N{\mathrm{S}}_{2}}-{\mathrm{S}}_{2}{e}^{-N{\mathrm{S}}_{1}}) + 2 L{\mathrm{N}}^{2}({\mathrm{S}}_{2}{T}_{i1}-{\mathrm{S}}_{1}{T}_{i2})]\end{array}}{2\mathrm{L}{\mathrm{N}}^{2}\left({S}_{1}-{\mathrm{S}}_{2}\right)} $$ \dfrac{\begin{array}{c}-[Da{\mathrm{N}}^{2}\left({S}_{3}^{2}-{S}_{4}^{2}\right) + 2{P}_{4}\left({e}^{N{\mathrm{S}}_{3}}-{e}^{N{\mathrm{S}}_{4}}\right) + \\ 2{P}_{3}({e}^{-N{\mathrm{S}}_{3}}-{e}^{-N{\mathrm{S}}_{4}}) + 2 L{\mathrm{N}}^{2}({T}_{i4}-{T}_{i3})]\end{array}}{2\mathrm{L}{\mathrm{N}}^{2}\left({S}_{3}-{\mathrm{S}}_{4}\right)} $$\dfrac{ {\begin{array}{*{20}{c} }\begin{array}{l} - [Da{ {\rm{N} }^2}{ {\rm{S} }_3}{ {\rm{S} }_4}\left( { { {\rm{S} }_4} - { {\rm{S} }_3} } \right) + \\2{P_4}\left( { { {\rm{S} }_3}{e^{N{ {\rm{S} }_4} } } - { {\rm{S} }_4}{e^{N{ {\rm{S} }_3} } } } \right) + \end{array}\\\begin{array}{l}2{P_3}({ {\rm{S} }_3}{e^{ - N{ {\rm{S} }_4} } } - { {\rm{S} }_4}{e^{ - N{ {\rm{S} }_3} } }) + \\2L{ {\rm{N} }^2}({ {\rm{S} }_4}{T_{i3} } - { {\rm{S} }_3}{T_{i4} })]\end{array}\end{array} } }{ {2{\rm{L} }{ {\rm{N} }^2}\left( { {S_3} - { {\rm{S} }_4} } \right)} }$$\dfrac{{\begin{array}{*{20}{c}}\begin{array}{l}[2{P_6}\left( {{e^N} - {e^{N{S_5}}}} \right) + \\Da{N^2}(1 - S_5^2) + \end{array}\\\begin{array}{l}2{P_5}\left( {{e^{ - N}} - {e^{ - N{S_5}}}} \right) + \\2L{N^2}{T_{i5}}]\end{array}\end{array}}}{{2{\rm{L}}{N^2}\left( {{S_5} - 1} \right)}}$$\dfrac{{\begin{array}{*{20}{c}}\begin{array}{l} - [2{P_6}\left( {{S_5}{e^N} - {e^{N{S_5}}}} \right) + \\Da{N^2}({S_5} - S_5^2) + \end{array}\\\begin{array}{l}2{P_5}\left( {{S_5}{e^{ - N}} - {e^{ - N{S_5}}}} \right) + \\2L{N^2}{T_{i5}}]\end{array}\end{array}}}{{2{\rm{L}}{N^2}\left( {{S_5} - 1} \right)}}$
    下载: 导出CSV
  • [1] Nteld DA, Kuznetsov AV, Xiong M. Thermally developing forced convection in a porous medium: parallel plate channel with walls at uniform temperature, with axial conduction and viscous dissipation effects. International Journal of Heat and Mass Transfer, 2003, 46(4): 643-651 doi: 10.1016/S0017-9310(02)00327-7
    [2] Hooman K. A perturbation solution for forced convection in a porous-saturated duct. Journal of Computational and Applied Mathematics, 2006, 211(1): 57-66
    [3] Li HY, Leong KC, Jin LW, et al. Transient two-phase flow and heat transfer with localized heating in porous media. International Journal of Thermal Sciences, 2010, 49(7): 1115-1127 doi: 10.1016/j.ijthermalsci.2010.01.024
    [4] Al-Farhany K, Turan A. Non-Darcy effects on conjugate double-diffusive natural convection in a variable porous layer sandwiched by finite thickness walls. International Journal of Heat and Mass Transfer, 2011, 54(13-14): 2868-2879 doi: 10.1016/j.ijheatmasstransfer.2011.03.012
    [5] Dehghan M, Mahmoudi Y, Valipour MS, et al. Combined conduction–convection–radiation heat transfer of slip flow inside a micro-channel filled with a porous material. Transport in Porous Media, 2015, 108(2): 413-436 doi: 10.1007/s11242-015-0483-z
    [6] Celli M, Rees DAS, Barletta A. The effect of local thermal non-equilibrium on forced convection boundary layer flow from a heated surface in porous media. International Journal of Heat and Mass Transfer, 2010, 53(17-18): 3533-3539 doi: 10.1016/j.ijheatmasstransfer.2010.04.014
    [7] Vadasz P. Basic natural convection in a vertical porous layer differentially heated from its sidewalls subject to lack of local thermal equilibrium. International Journal of Heat and Mass Transfer, 2011, 54(11-12): 2387-2396 doi: 10.1016/j.ijheatmasstransfer.2011.02.023
    [8] Alomar OR. Analysis of Variable Porosity, Thermal Dispersion, and Local Thermal Non-equilibrium on Two-phase Flow Inside Porous Media. Applied Thermal Engineering, 2019, 154: 263-283 doi: 10.1016/j.applthermaleng.2019.03.069
    [9] Parhizi M, Torabi M, Jain A. Local thermal non-equilibrium (LTNE) model for developed flow in porous media with spatially-varying Biot number. International Journal of Heat and Mass Transfer, 2021, 164: 120538 doi: 10.1016/j.ijheatmasstransfer.2020.120538
    [10] Abbasbandy S, Shivanian E, Hashim I. Exact analytical solution of forced convection in a porous-saturated duct. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(10): 3981-3989 doi: 10.1016/j.cnsns.2011.01.009
    [11] Hashemi SMH, Fazeli SA, Shokouhmand H. Fully developed non-Darcian forced convection slip-flow in a micro-annulus filled with a porous medium: analytical solution. Energy Conversion and Management, 2011, 52(2): 1054-1060 doi: 10.1016/j.enconman.2010.08.034
    [12] Lisboa KM, Cotta RM. Hybrid integral transforms for flow development in ducts partially filled with porous media. Proceedings of The Royal Society A Mathematical Physical and Engineering Sciences, 2018, 474(2209): 20170637 doi: 10.1098/rspa.2017.0637
    [13] Torabi M, Karimi N, Zhang K. Heat transfer and second law analyses of forced convection in a channel partially filled by porous media and featuring internal heat sources. Energy, 2015, 93: 106-127 doi: 10.1016/j.energy.2015.09.010
    [14] Li Q, Hu PF. Analytical Solutions of Fluid Flow and Heat Transfer in a Partial Porous Channel with Stress Jump and Continuity Interface Conditions using LTNE Model. International Journal of Heat and Mass Transfer, 2019, 128: 1280-1295 doi: 10.1016/j.ijheatmasstransfer.2018.08.132
    [15] Li Q, Zhang RM, Hu PF. Effect of thermal boundary conditions on forced convection under LTNE model with no-slip porous-fluid interface condition. International Journal of Heat and Mass Transfer, 2021, 167: 120803 doi: 10.1016/j.ijheatmasstransfer.2020.120803
    [16] Ucar E, Mobedi M, Pop I. Effect of an inserted porous layer located at a wall of a parallel plate channel on forced convection heat transfer. Transport in Porous Media, 2013, 98(1): 35-57 doi: 10.1007/s11242-013-0131-4
    [17] Kuznetsov AV, Nield DA. Forced convection in a channel partly occupied by a bidisperse porous medium: asymmetric case. International Journal of Heat and Mass Transfer, 2010, 53(23-24): 5167-5175 doi: 10.1016/j.ijheatmasstransfer.2010.07.046
    [18] 李琪, 赵一远, 胡鹏飞. 多孔介质-自由流界面应力跳跃条件下流动特性解析解. 力学学报, 2018, 50(02): 415-426

    Li Qi, Zhao Yiyuan, Hu Pengfei. Analytical solution for porous-fluid flowcharacteristics with stress jump interfacial condition. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(02): 415-426 (in chinese)
    [19] 李琪, 张容铭, 胡鹏飞. LTNE条件下界面对流传热系数对部分填充多孔介质通道传热特性的影响. 化工学报, 2021, 72(08): 4121-4133

    Li Qi, Zhang Rongming, Hu Pengfei. Influence of interfacial convective heat transfer coefficient on heat transfer in partially filled porous channel under LTNE condition. Ciesc Journal, 2021, 72(08): 4121-4133 (in chinese)
    [20] Satyamurty VV, Bhargavi D. Forced convection in thermally developing region of a channel partially filled with a porous material and optimal porous fraction. International Journal of Thermal Sciences, 2010, 49(2): 319-332 doi: 10.1016/j.ijthermalsci.2009.07.023
    [21] Mahmoudi Y, Maerefat M. Analytical investigation of heat transfer enhancement in a channel partially filled with a porous material under local thermal non-equilibrium condition. International Journal of Thermal Sciences, 2011, 50(12): 2386-2401 doi: 10.1016/j.ijthermalsci.2011.07.008
    [22] Yang K, Vafai K. Restrictions on the validity of the thermal conditions at the porous-fluid interface-an exact solution. Journal of Heat Transfer, 2011, 133(11): 112601 doi: 10.1115/1.4004350
    [23] Cekmer O, Mobedi M, Ozerdem B, et al. Fully developed forced convection in a parallel plate channel with a centered porous layer. Transport in Porous Media, 2012, 93(1): 179-201 doi: 10.1007/s11242-012-9951-x
    [24] Mahmoudi Y, Karimi N. Numerical investigation of heat transfer enhancement in a pipe partially filled with a porous material under local thermal non-equilibrium condition. International Journal of Heat and Mass Transfer, 2014, 68: 161-173 doi: 10.1016/j.ijheatmasstransfer.2013.09.020
    [25] Teamah MA, El-Maghlany WM, Dawood MMK. Numerical simulation of laminar forced convection in horizontal pipe partially or completely filled with porous material. International Journal of Thermal Sciences, 2011, 50(8): 1512-1522 doi: 10.1016/j.ijthermalsci.2011.03.003
    [26] Choo J, Borja RI. Stabilized mixed finite elements for deformable porous media with double porosity. Computer Methods in Applied Mechanics and Engineering, 2015, 293: 131-154 doi: 10.1016/j.cma.2015.03.023
    [27] Torabi M, Peterson GP, Torabi M, et al. A thermodynamic analysis of forced convection through porous media using pore scale modeling. International Journal of Heat and Mass Transfer, 2016, 99: 303-316 doi: 10.1016/j.ijheatmasstransfer.2016.03.127
    [28] Kundu P, Kumar V, Mishra IM. Experimental and numerical investigation of fluid flow hydrodynamics in porous media: Characterization of pre-Darcy, Darcy and non-Darcy flow regimes. Powder Technology, 2016, 303: 278-291 doi: 10.1016/j.powtec.2016.09.037
    [29] Suzuki A, Fomin SA, Chugunov VA, et al. Fractional diffusion modeling of heat transfer in porous and fractured media. International Journal of Heat and Mass Transfer, 2016, 103: 611-618 doi: 10.1016/j.ijheatmasstransfer.2016.08.002
    [30] Berrone S, Pieraccini S, Scialo S. Flow simulations in porous media with immersed intersecting fractures. Journal of Computational Physics, 2017, 345: 768-791 doi: 10.1016/j.jcp.2017.05.049
    [31] Baragh S, Shokouhmand H, Ajarostaghi SSM, et al. An experimental investigation on forced convection heat transfer of single-phase flow in a channel with different arrangements of porous media. International Journal of Thermal Sciences, 2018, 134: 370-379 doi: 10.1016/j.ijthermalsci.2018.04.030
    [32] Kacur J, Mihala P, Toth M. Numerical modeling of heat exchange and unsaturated–saturated flow in porous media. Computers and Mathematics with Applications, 2019, 77(6): 1668-1680 doi: 10.1016/j.camwa.2018.06.009
    [33] Morales FA, Showalter RE. A Darcy–Brinkman model of fractures in porous media. Journal of Mathematical Analysis and Applications, 2017, 452(2): 1332-1358 doi: 10.1016/j.jmaa.2017.03.063
    [34] 孟旭辉, 王亮, 郭照立. 多孔介质中流固作用力的动量交换计算. 力学学报, 2014, 46(004): 525-532 doi: 10.6052/0459-1879-13-359

    Meng Xuhui, Wang Liang, Guo Zhaoli. Forced evaluation using momentum-exchange method in porous medi. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4): 525-532 (in chinese) doi: 10.6052/0459-1879-13-359
    [35] 侯晓萍, 陈胜宏. 采用复合单元法模拟裂隙多孔介质变饱和流动. 岩土力学, 2020(4): 1437-1446 doi: 10.16285/j.rsm.2019.0840

    Hou Xiaoping, Chen Shenghong. Simulation of variably-saturated flow in fractured porous media using composite element method. Rock and Soil Mechanics, 2020(4): 1437-1446 (in chinese) doi: 10.16285/j.rsm.2019.0840
    [36] Ochoa-tapia JA, Whitaker S. Momentum transfer at the boundary between a porous medium and a homogeneous fluid(I): Theoretical development. International Journal of Heat and Mass Transfer, 1995, 38(14): 2635-2646 doi: 10.1016/0017-9310(94)00346-W
    [37] Ochoa-tapia JA, Whitaker S. Momentum transfer at the boundary between a porous medium and a homogeneous fluid(II): Comparison with experiment. International Journal of Heat and Mass Transfer, 1995, 38(14): 2647-2655 doi: 10.1016/0017-9310(94)00347-X
    [38] Rohsenow WM, Hartnett JP. Handbook of Heat Transfer. Osborne McGraw-Hill, 1973
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  2
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-04
  • 录用日期:  2022-09-16
  • 网络出版日期:  2022-09-16

目录

    /

    返回文章
    返回