[1] |
Peng C. Study of turbulence modulation by finite-size solid particles with the lattice boltzmann method. [PhD Thesis]. Newark: University of Delaware, 2018
|
[2] |
Voth GA, Soldati A. Anisotropic particles in turbulence. Annual Review of Fluid Mechanics, 2017, 49(1): 249-276 doi: 10.1146/annurev-fluid-010816-060135
|
[3] |
Gore RA, Crowe CT. Effect of particle size on modulating turbulent intensity. International Journal of Multiphase Flow, 1989, 15(2): 279-285 doi: 10.1016/0301-9322(89)90076-1
|
[4] |
Gore RA, Crowe CT. Modulation of turbulence by a dispersed phase. Journal of Fluids Engineering, 1991, 113(2): 304-307 doi: 10.1115/1.2909497
|
[5] |
唐一敏, 陈林烽, 董宇红. 近壁湍流和微颗粒的两相作用及减阻效应. 上海大学学报(自然科学版), 2012, 18(3): 282-287 (Tang Yimin, Chen Linfeng, Dong Yuhong. Numerical investigation of particle interaction with wall-bounded turbulence and drag reduction. Journal of Shanghai University (Natural Science), 2012, 18(3): 282-287 (in Chinese)
|
[6] |
Zhao LH, Andersson HI, Gillissen JJJ. Turbulence modulation and drag reduction by spherical particles. Physics of Fluids, 2010, 22(8): 081702 doi: 10.1063/1.3478308
|
[7] |
Pan Y, Banerjee S. Numerical investigation of the effects of large particles on wall-turbulence. Physics of Fluids, 1997, 9(12): 3786-3807 doi: 10.1063/1.869514
|
[8] |
Lucci F, Ferrante A, Elghobashi S. Modulation of isotropic turbulence by particles of Taylor length-scale size. Journal of Fluid Mechanics, 2010, 650(1): 5-55
|
[9] |
Shao X, Wu T, Yu Z. Fully resolved numerical simulation of particle-laden turbulent flow in a horizontal channel at a low Reynolds number. Journal of Fluid Mechanics, 2012, 693: 319-344 doi: 10.1017/jfm.2011.533
|
[10] |
余钊圣, 王宇, 邵雪明等. 中性悬浮大颗粒对湍槽流影响的数值研究. 浙江大学学报:工学版, 2013, 47(1): 109-130 (Yu Zhaosheng, Wang Yu, Shao Xueming, et al. Numerical studies on effects of neutrally buoyant large particles on turbulent channel flow. Journal of Zhejiang University (Engineering Science), 2013, 47(1): 109-130 (in Chinese)
|
[11] |
Yu Z, Zhu C, Wang Y, et al. Effects of finite-size neutrally buoyant particles on the turbulent channel flow at a Reynolds number of 395. Applied Mathematics and Mechanics, 2019, 40(2): 293-304
|
[12] |
Balachandar S. Turbulent dispersed multiphase flow. Annual Review of Fluid Mechanics, 2010, 42(1): 111-133 doi: 10.1146/annurev.fluid.010908.165243
|
[13] |
王英奎, 江春波, 李玲. 流动减阻的研究综述. 水力发电, 2008, 2: 70-73 (Wang Yingkui, Jiang Chunbo, Li Ling. Review of research on drag reduction. Water Power, 2008, 2: 70-73 (in Chinese) doi: 10.3969/j.issn.0559-9342.2008.02.022
|
[14] |
Marusic I, Chandran D, Rouhi A, et al. An energy-efficient pathway to turbulent drag reduction. Nature Communications, 2021, 12(1): 5805
|
[15] |
Jung WJ, Mangiavacchi N, Akhavan R. Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations. Physics of Fluids A: Fluid Dynamics, 1992, 4(8): 1605-1607 doi: 10.1063/1.858381
|
[16] |
Du Y, Karniadakis GE. Suppressing wall turbulence by means of a transverse traveling wave. Science, 2000, 288(5469): 1230-1234 doi: 10.1126/science.288.5469.1230
|
[17] |
Quadrio M, Ricco P. Initial response of a turbulent channel flow to spanwise oscillation of the walls. Journal of Turbulence, 2003, 4(1): 007
|
[18] |
Choi J, Xu C, Sung HJ. Drag reduction by spanwise wall oscillation in wall-bounded turbulent flows. AIAA Journal, 2002, 40(5): 842-850 doi: 10.2514/2.1750
|
[19] |
Ricco P, Quadrio M. Wall-oscillation conditions for drag reduction in turbulent channel flow. International Journal of Heat & Fluid Flow, 2008, 29(4): 891-902
|
[20] |
Ricco P, Ottonelli C, Hasegawa Y, et al. Changes in turbulent dissipation in a channel flow with oscillating walls. Journal of Fluid Mechanics, 2012, 700(6): 77-104
|
[21] |
Yakeno A, Hasegawa Y, Kasagi N. Modification of quasi-streamwise vortical structure in a drag-reduced turbulent channel flow with spanwise wall oscillation. Physics of Fluids, 2014, 26(8): 085109 doi: 10.1063/1.4893903
|
[22] |
Quadrio M, Ricco P. Critical assessment of turbulent drag reduction through spanwise wall oscillations. Journal of Fluid Mechanics, 2004, 521: 251-271 doi: 10.1017/S0022112004001855
|
[23] |
Touber E, Leschziner MA. Near-wall streak modification by spanwise oscillatory wall motion and drag-reduction mechanisms. Journal of Fluid Mechanics, 2012, 693: 150-200 doi: 10.1017/jfm.2011.507
|
[24] |
Yuan W, Zhang M, Cui Y, et al. Phase-space dynamics of near-wall streaks in wall-bounded turbulence with spanwise oscillation. Physics of Fluids, 2019, 31(12): 125113
|
[25] |
Li Z, Ji S, Duan H, et al. Coupling effect of wall slip and spanwise oscillation on drag reduction in turbulent channel flow. Physical Review Fluids, 2020, 5(12): 124601
|
[26] |
Quadrio M, Ricco P, Viotti C. Streamwise-traveling waves of spanwise wall velocity for turbulent drag reduction. Journal of Fluid Mechanics, 2009, 627: 161-178 doi: 10.1017/S0022112009006077
|
[27] |
Ricco P, Skote M, Leschziner MA. A review of turbulent skin-friction drag reduction by near-wall transverse forcing. Progress in Aerospace Sciences, 2021, 123: 100713 doi: 10.1016/j.paerosci.2021.100713
|
[28] |
Yu Z, Shao X. A direct-forcing fictitious domain method for particulate flows. Journal of Computational Physics, 2007, 227(1): 292-314 doi: 10.1016/j.jcp.2007.07.027
|
[29] |
Glowinski R, Pan TW, Hesla TI, et al. A distributed Lagrange multiplier/fictitious domain method for particulate flows. International Journal of Multiphase Flow, 1999, 25(5): 755-794 doi: 10.1016/S0301-9322(98)00048-2
|
[30] |
Crowe CT, Sommerfield M, Tsuji Y. Multiphase Flows with Droplets and Particles. Boca Raton: CRC Press, 2011
|
[31] |
Yu Z, Lin Z, Shao X, et al. A parallel fictitious domain method for the interface-resolved simulation of particle-laden flows and its application to the turbulent channel flow. Engineering Applications of Computational Fluid Mechanics, 2016, 10(1): 160-170 doi: 10.1080/19942060.2015.1092268
|
[32] |
Zhu C, Yu Z, Pan D, et al. Interface-resolved direct numerical simulations of the interactions between spheroidal particles and upward vertical turbulent channel flows. Journal of Fluid Mechanics, 2020, 891: A6
|
[33] |
Zhu C, Qian L, Lin Z, et al. Turbulent channel flow of a binary mixture of neutrally buoyant ellipsoidal particles. Physics of Fluids, 2022, 34(5): 53609 doi: 10.1063/5.0089088
|
[34] |
Wang LP, Peng C, Guo Z, et al. Lattice Boltzmann simulation of particle-laden turbulent channel flow. Computers & Fluids, 2016, 124: 226-236
|
[35] |
Moser RD, Kim J, Mansour NN. Direct numerical simulation of turbulent channel flow up to Reτ = 590. Physics of Fluids, 1999, 11(4): 943-945 doi: 10.1063/1.869966
|
[36] |
Jimenez J, Hoyas S. Turbulent fluctuations above the buffer layer of wall-bounded flows. Journal of Fluid Mechanics, 2008, 611: 215-236 doi: 10.1017/S0022112008002747
|
[37] |
Hurst E, Yang Q, Chung Y. The effect of Reynolds number on turbulent drag reduction by streamwise travelling waves. Journal of Fluid Mechanics, 2014, 759: 28-55 doi: 10.1017/jfm.2014.524
|
[38] |
Stokes GG. On the effect of the internal friction of fluids on the motion of pendulums. Transactions of the Cambridge Philosophical Society, 1851, 9: 8-106
|
[39] |
Stokes GG. On the effect of the internal friction of fluids on the motion of pendulums. Transactions of the Cambridge Philosophical Society, 1851, 9: 8-106
|
[40] |
Zhu C, Yu Z, Shao X. Interface-resolved direct numerical simulations of the interactions between neutrally buoyant spheroidal particles and turbulent channel flows. Physics of Fluids, 2018, 30(11): 115103 doi: 10.1063/1.5051592
|
[41] |
Picano F, Breugem W, Brandt L. Turbulent channel flow of dense suspensions of neutrally buoyant spheres. Journal of Fluid Mechanics, 2015, 764: 463-487 doi: 10.1017/jfm.2014.704
|
[42] |
Rubinow SI, Keller JB. The transverse force on a spinning sphere moving in a viscous fluid. Journal of Fluid Mechanics, 1961, 11(3): 447 doi: 10.1017/S0022112061000640
|
[43] |
Saffman PG. The lift on a small sphere in a slow shear. Journal of Fluid Mechanics, 1965, 22(2): 385-400 doi: 10.1017/S0022112065000824
|
[44] |
Shao X, Yu Z, Sun B. Inertial migration of spherical particles in circular Poiseuille flow at moderately high Reynolds numbers. Physics of Fluids, 2008, 20(10): 103307 doi: 10.1063/1.3005427
|
[45] |
Costa P, Picano F, Brandt L, et al. Universal scaling laws for dense particle suspensions in turbulent wall-bounded flows. Physical Review Letters, 2016, 117(13): 134501
|