EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

壁面展向震荡诱导颗粒湍槽流减阻的直接数值模拟研究

康晓宣 胡建新 林昭武 潘定一

康晓宣, 胡建新, 林昭武, 潘定一. 壁面展向震荡诱导颗粒湍槽流减阻的直接数值模拟研究. 力学学报, 2023, 55(5): 1087-1098 doi: 10.6052/0459-1879-22-590
引用本文: 康晓宣, 胡建新, 林昭武, 潘定一. 壁面展向震荡诱导颗粒湍槽流减阻的直接数值模拟研究. 力学学报, 2023, 55(5): 1087-1098 doi: 10.6052/0459-1879-22-590
Kang Xiaoxuan, Hu Jianxin, Lin Zhaowu, Pan Dingyi. Drag reduction of particle-laden channel flow by spanwise wall oscillation: A direct numerical simulation. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(5): 1087-1098 doi: 10.6052/0459-1879-22-590
Citation: Kang Xiaoxuan, Hu Jianxin, Lin Zhaowu, Pan Dingyi. Drag reduction of particle-laden channel flow by spanwise wall oscillation: A direct numerical simulation. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(5): 1087-1098 doi: 10.6052/0459-1879-22-590

壁面展向震荡诱导颗粒湍槽流减阻的直接数值模拟研究

doi: 10.6052/0459-1879-22-590
基金项目: 国家自然科学基金资助项目(91852205, 51906224)
详细信息
    通讯作者:

    潘定一, 副教授, 主要研究方向为非牛顿流体力学、多相流. E-mail: dpan@zju.edu.cn

  • 中图分类号: O359

DRAG REDUCTION OF PARTICLE-LADEN CHANNEL FLOW BY SPANWISE WALL OSCILLATION: A DIRECT NUMERICAL SIMULATION

  • 摘要: 对湍槽流的减阻研究具有科学意义和工程应用价值, 已有大量研究表明向单相湍流中添加离散物质是一种有效的被动减阻方法. 相比于被动减阻技术, 主动减阻技术如壁面震荡减阻的可控性更高, 近年来也得到广泛的关注, 但对于壁面展向震荡诱导减阻的研究主要针对单相湍槽流, 还未见有相关研究将这一手段用于含颗粒湍槽流的减阻. 因此, 文章采用直接数值模拟方法开展了壁面展向震荡诱导颗粒湍槽流减阻的机理研究. 一方面关注壁面震荡对颗粒湍槽流的调制效果及机理. 另一方面关注颗粒和震荡对单相湍槽流的耦合减阻效应. 结果表明: 壁面震荡可以达到有效减阻, 存在最优震荡周期使减阻率达到最大, 且最优震荡周期与单相流结果相近. 在相同体积分数下, 施加壁面震荡的小颗粒湍槽流减阻效果更好. 相比于单相湍槽流, 当震荡周期小于最优周期时, 震荡和颗粒的耦合效应对减阻率的额外贡献较小且可能为负, 当大于最优周期时额外贡献逐渐增大, 对整体减阻率的占比最高可达10%左右.

     

  • 图  1  计算域示意图(包含颗粒和壁面震荡方向)

    Figure  1.  Schematic of the computational domain which contains particles and wall oscillation direction

    图  2  半槽道内的平均流速, 湍流雷诺应力速度均方根分布

    Figure  2.  The mean flow velocity, turbulent Reynolds stress and root mean square velocity profiles of half channel

    图  3  壁面展向震荡的单相湍槽流模拟结果

    Figure  3.  Simulation results of single-phase turbulent flow by spanwise wall oscillation

    图  4  一个震荡周期内不同时刻的展向速度分布的解析解与数值解对比

    Figure  4.  Comparison of analytical solution and numerical solution of the spanwise velocity distribution in an oscillation period

    图  5  Rp随震荡周期的变化情况

    Figure  5.  Rp as a function of T +

    图  6  壁面震荡的含颗粒(a/H = 0.1)湍槽流

    Figure  6.  The particle laden (a/H = 0.1) turbulent channel flow by spanwise wall oscillation

    图  7  壁面震荡的含颗粒(a/H = 0.25)湍槽流

    Figure  7.  The particle laden (a/H = 0.25) turbulent channel flow by spanwise wall oscillation

    图  8  近壁处高低速条带

    Figure  8.  Streamwise velocity contours near a wall

    图  9  近壁处涡结构

    Figure  9.  Structure of vortex near a wall

    图  10  S + Rp的拟合结果

    Figure  10.  The fitting results of S + and Rp

    图  11  $A_{\min }^ + $T + 的变化情况

    Figure  11.  $A_{\min }^ + $ as a function of T +

    图  12  $R_{{\text{p}} + {\text{osc}}}^{'} $, $R_{{\text{osc}}}^{'} $$R_{{\text{coup}}}^{'} $随震荡周期的变化

    Figure  12.  $R_{{\text{p}} + {\text{osc}}}^{'} $, $R_{{\text{osc}}}^{'} $ and $R_{{\text{coup}}}^{'} $ as a function of T +

  • [1] Peng C. Study of turbulence modulation by finite-size solid particles with the lattice boltzmann method. [PhD Thesis]. Newark: University of Delaware, 2018
    [2] Voth GA, Soldati A. Anisotropic particles in turbulence. Annual Review of Fluid Mechanics, 2017, 49(1): 249-276 doi: 10.1146/annurev-fluid-010816-060135
    [3] Gore RA, Crowe CT. Effect of particle size on modulating turbulent intensity. International Journal of Multiphase Flow, 1989, 15(2): 279-285 doi: 10.1016/0301-9322(89)90076-1
    [4] Gore RA, Crowe CT. Modulation of turbulence by a dispersed phase. Journal of Fluids Engineering, 1991, 113(2): 304-307 doi: 10.1115/1.2909497
    [5] 唐一敏, 陈林烽, 董宇红. 近壁湍流和微颗粒的两相作用及减阻效应. 上海大学学报(自然科学版), 2012, 18(3): 282-287 (Tang Yimin, Chen Linfeng, Dong Yuhong. Numerical investigation of particle interaction with wall-bounded turbulence and drag reduction. Journal of Shanghai University (Natural Science), 2012, 18(3): 282-287 (in Chinese)
    [6] Zhao LH, Andersson HI, Gillissen JJJ. Turbulence modulation and drag reduction by spherical particles. Physics of Fluids, 2010, 22(8): 081702 doi: 10.1063/1.3478308
    [7] Pan Y, Banerjee S. Numerical investigation of the effects of large particles on wall-turbulence. Physics of Fluids, 1997, 9(12): 3786-3807 doi: 10.1063/1.869514
    [8] Lucci F, Ferrante A, Elghobashi S. Modulation of isotropic turbulence by particles of Taylor length-scale size. Journal of Fluid Mechanics, 2010, 650(1): 5-55
    [9] Shao X, Wu T, Yu Z. Fully resolved numerical simulation of particle-laden turbulent flow in a horizontal channel at a low Reynolds number. Journal of Fluid Mechanics, 2012, 693: 319-344 doi: 10.1017/jfm.2011.533
    [10] 余钊圣, 王宇, 邵雪明等. 中性悬浮大颗粒对湍槽流影响的数值研究. 浙江大学学报:工学版, 2013, 47(1): 109-130 (Yu Zhaosheng, Wang Yu, Shao Xueming, et al. Numerical studies on effects of neutrally buoyant large particles on turbulent channel flow. Journal of Zhejiang University (Engineering Science), 2013, 47(1): 109-130 (in Chinese)
    [11] Yu Z, Zhu C, Wang Y, et al. Effects of finite-size neutrally buoyant particles on the turbulent channel flow at a Reynolds number of 395. Applied Mathematics and Mechanics, 2019, 40(2): 293-304
    [12] Balachandar S. Turbulent dispersed multiphase flow. Annual Review of Fluid Mechanics, 2010, 42(1): 111-133 doi: 10.1146/annurev.fluid.010908.165243
    [13] 王英奎, 江春波, 李玲. 流动减阻的研究综述. 水力发电, 2008, 2: 70-73 (Wang Yingkui, Jiang Chunbo, Li Ling. Review of research on drag reduction. Water Power, 2008, 2: 70-73 (in Chinese) doi: 10.3969/j.issn.0559-9342.2008.02.022
    [14] Marusic I, Chandran D, Rouhi A, et al. An energy-efficient pathway to turbulent drag reduction. Nature Communications, 2021, 12(1): 5805
    [15] Jung WJ, Mangiavacchi N, Akhavan R. Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations. Physics of Fluids A: Fluid Dynamics, 1992, 4(8): 1605-1607 doi: 10.1063/1.858381
    [16] Du Y, Karniadakis GE. Suppressing wall turbulence by means of a transverse traveling wave. Science, 2000, 288(5469): 1230-1234 doi: 10.1126/science.288.5469.1230
    [17] Quadrio M, Ricco P. Initial response of a turbulent channel flow to spanwise oscillation of the walls. Journal of Turbulence, 2003, 4(1): 007
    [18] Choi J, Xu C, Sung HJ. Drag reduction by spanwise wall oscillation in wall-bounded turbulent flows. AIAA Journal, 2002, 40(5): 842-850 doi: 10.2514/2.1750
    [19] Ricco P, Quadrio M. Wall-oscillation conditions for drag reduction in turbulent channel flow. International Journal of Heat & Fluid Flow, 2008, 29(4): 891-902
    [20] Ricco P, Ottonelli C, Hasegawa Y, et al. Changes in turbulent dissipation in a channel flow with oscillating walls. Journal of Fluid Mechanics, 2012, 700(6): 77-104
    [21] Yakeno A, Hasegawa Y, Kasagi N. Modification of quasi-streamwise vortical structure in a drag-reduced turbulent channel flow with spanwise wall oscillation. Physics of Fluids, 2014, 26(8): 085109 doi: 10.1063/1.4893903
    [22] Quadrio M, Ricco P. Critical assessment of turbulent drag reduction through spanwise wall oscillations. Journal of Fluid Mechanics, 2004, 521: 251-271 doi: 10.1017/S0022112004001855
    [23] Touber E, Leschziner MA. Near-wall streak modification by spanwise oscillatory wall motion and drag-reduction mechanisms. Journal of Fluid Mechanics, 2012, 693: 150-200 doi: 10.1017/jfm.2011.507
    [24] Yuan W, Zhang M, Cui Y, et al. Phase-space dynamics of near-wall streaks in wall-bounded turbulence with spanwise oscillation. Physics of Fluids, 2019, 31(12): 125113
    [25] Li Z, Ji S, Duan H, et al. Coupling effect of wall slip and spanwise oscillation on drag reduction in turbulent channel flow. Physical Review Fluids, 2020, 5(12): 124601
    [26] Quadrio M, Ricco P, Viotti C. Streamwise-traveling waves of spanwise wall velocity for turbulent drag reduction. Journal of Fluid Mechanics, 2009, 627: 161-178 doi: 10.1017/S0022112009006077
    [27] Ricco P, Skote M, Leschziner MA. A review of turbulent skin-friction drag reduction by near-wall transverse forcing. Progress in Aerospace Sciences, 2021, 123: 100713 doi: 10.1016/j.paerosci.2021.100713
    [28] Yu Z, Shao X. A direct-forcing fictitious domain method for particulate flows. Journal of Computational Physics, 2007, 227(1): 292-314 doi: 10.1016/j.jcp.2007.07.027
    [29] Glowinski R, Pan TW, Hesla TI, et al. A distributed Lagrange multiplier/fictitious domain method for particulate flows. International Journal of Multiphase Flow, 1999, 25(5): 755-794 doi: 10.1016/S0301-9322(98)00048-2
    [30] Crowe CT, Sommerfield M, Tsuji Y. Multiphase Flows with Droplets and Particles. Boca Raton: CRC Press, 2011
    [31] Yu Z, Lin Z, Shao X, et al. A parallel fictitious domain method for the interface-resolved simulation of particle-laden flows and its application to the turbulent channel flow. Engineering Applications of Computational Fluid Mechanics, 2016, 10(1): 160-170 doi: 10.1080/19942060.2015.1092268
    [32] Zhu C, Yu Z, Pan D, et al. Interface-resolved direct numerical simulations of the interactions between spheroidal particles and upward vertical turbulent channel flows. Journal of Fluid Mechanics, 2020, 891: A6
    [33] Zhu C, Qian L, Lin Z, et al. Turbulent channel flow of a binary mixture of neutrally buoyant ellipsoidal particles. Physics of Fluids, 2022, 34(5): 53609 doi: 10.1063/5.0089088
    [34] Wang LP, Peng C, Guo Z, et al. Lattice Boltzmann simulation of particle-laden turbulent channel flow. Computers & Fluids, 2016, 124: 226-236
    [35] Moser RD, Kim J, Mansour NN. Direct numerical simulation of turbulent channel flow up to Reτ = 590. Physics of Fluids, 1999, 11(4): 943-945 doi: 10.1063/1.869966
    [36] Jimenez J, Hoyas S. Turbulent fluctuations above the buffer layer of wall-bounded flows. Journal of Fluid Mechanics, 2008, 611: 215-236 doi: 10.1017/S0022112008002747
    [37] Hurst E, Yang Q, Chung Y. The effect of Reynolds number on turbulent drag reduction by streamwise travelling waves. Journal of Fluid Mechanics, 2014, 759: 28-55 doi: 10.1017/jfm.2014.524
    [38] Stokes GG. On the effect of the internal friction of fluids on the motion of pendulums. Transactions of the Cambridge Philosophical Society, 1851, 9: 8-106
    [39] Stokes GG. On the effect of the internal friction of fluids on the motion of pendulums. Transactions of the Cambridge Philosophical Society, 1851, 9: 8-106
    [40] Zhu C, Yu Z, Shao X. Interface-resolved direct numerical simulations of the interactions between neutrally buoyant spheroidal particles and turbulent channel flows. Physics of Fluids, 2018, 30(11): 115103 doi: 10.1063/1.5051592
    [41] Picano F, Breugem W, Brandt L. Turbulent channel flow of dense suspensions of neutrally buoyant spheres. Journal of Fluid Mechanics, 2015, 764: 463-487 doi: 10.1017/jfm.2014.704
    [42] Rubinow SI, Keller JB. The transverse force on a spinning sphere moving in a viscous fluid. Journal of Fluid Mechanics, 1961, 11(3): 447 doi: 10.1017/S0022112061000640
    [43] Saffman PG. The lift on a small sphere in a slow shear. Journal of Fluid Mechanics, 1965, 22(2): 385-400 doi: 10.1017/S0022112065000824
    [44] Shao X, Yu Z, Sun B. Inertial migration of spherical particles in circular Poiseuille flow at moderately high Reynolds numbers. Physics of Fluids, 2008, 20(10): 103307 doi: 10.1063/1.3005427
    [45] Costa P, Picano F, Brandt L, et al. Universal scaling laws for dense particle suspensions in turbulent wall-bounded flows. Physical Review Letters, 2016, 117(13): 134501
  • 加载中
图(12)
计量
  • 文章访问数:  282
  • HTML全文浏览量:  70
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-13
  • 录用日期:  2023-03-28
  • 网络出版日期:  2023-03-31
  • 刊出日期:  2023-05-18

目录

    /

    返回文章
    返回