EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分数阶导热的热脉冲涂层边裂研究

陈少华 陈学军

陈少华, 陈学军. 基于分数阶导热的热脉冲涂层边裂研究. 力学学报, 2023, 55(10): 2312-2320 doi: 10.6052/0459-1879-23-134
引用本文: 陈少华, 陈学军. 基于分数阶导热的热脉冲涂层边裂研究. 力学学报, 2023, 55(10): 2312-2320 doi: 10.6052/0459-1879-23-134
Chen Shaohua, Chen Xuejun. Thermal pulse-induced edge cracking of coatings based on time-fractional heat conduction. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2312-2320 doi: 10.6052/0459-1879-23-134
Citation: Chen Shaohua, Chen Xuejun. Thermal pulse-induced edge cracking of coatings based on time-fractional heat conduction. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2312-2320 doi: 10.6052/0459-1879-23-134

基于分数阶导热的热脉冲涂层边裂研究

doi: 10.6052/0459-1879-23-134
基金项目: 国家自然科学基金项目(51871023)资助
详细信息
    通讯作者:

    陈学军, 教授, 主要研究方向为涂层/薄膜力学. E-mail: chenxuejun@ustb.edu.cn

  • 中图分类号: O346.1

THERMAL PULSE-INDUCED EDGE CRACKING OF COATINGS BASED ON TIME-FRACTIONAL HEAT CONDUCTION

  • 摘要: 热震边裂是涂层的常见失效模式之一, 严重影响涂层的防护性能, 因此准确预测涂层边缘裂纹的热致扩展行为至关重要. 本文基于Caputo分数阶导热模型, 研究热脉冲作用下涂层边缘裂纹扩展驱动力. 首先, 采用拉普拉斯变换和有限余弦积分变换得到瞬态温度场及热应力场的封闭解; 其次, 运用叠加原理及权函数法计算边缘裂纹尖端的热应力强度因子. 探讨了分数阶阶次、无量纲裂纹长度、无量纲时间等参数对热应力强度因子的影响规律. 结果表明: 热应力强度因子的峰值随着分数阶阶次的增大而提高; 与分数阶超扩散情形相比较, 经典傅里叶导热将低估热流脉冲对边缘裂纹的扩展驱动力; 与分数阶亚扩散情形相比较, 经典傅里叶导热则会高估热流脉冲对边缘裂纹的扩展驱动力; 热流脉冲作用下, 短裂纹的热应力强度因子峰值更高, 因而更易扩展.

     

  • 图  1  涂层−基体模型

    Figure  1.  Coating-substrate model

    图  2  无量纲温度$\bar \theta $在不同时间$\kappa $下的分布

    Figure  2.  The distribution of the dimensionless temperature $\bar \theta $ for various times $\kappa $

    图  3  无量纲应力$\bar \sigma $在不同时间$\kappa $下的分布

    Figure  3.  The distribution of the dimensionless stress $\bar \sigma $ for various times $\kappa $

    图  4  应力强度因子的时间历程

    Figure  4.  The time history of SIF

  • [1] Mondal K, Nunez L, Downey CM, et al. Recent advances in the thermal barrier coatings for extreme environments. Materials Science for Energy Technologies, 2021, 4: 208-210 doi: 10.1016/j.mset.2021.06.006
    [2] 彭中伏, 陈学军. 热对流作用下筒壁涂层的边裂行为. 力学学报, 2018, 50(2): 307-314 (Peng Zhongfu, Chen Xuejun. Edge cracking behavior of a coated hollow cylinder due to thermal convection. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 307-314 (in Chinese) doi: 10.6052/0459-1879-17-412

    Peng Zhongfu, Chen Xuejun. Edge cracking behavior of a coated hollow cylinder due to thermal convection. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 307-314. (in Chinese) doi: 10.6052/0459-1879-17-412
    [3] Xu XY, Xie XW, Liang QZ, et al. Probabilistic fracture mechanics analysis of heat transfer tube in floating nuclear power plant under multiple failure mechanisms. Nuclear Engineering and Design, 2023, 406: 112242 doi: 10.1016/j.nucengdes.2023.112242
    [4] Chen XJ, Wang XP. Effects of substrate thickness and heat transfer scheme on edge cracking of a brittle coating due to thermal transients. Theoretical and Applied Fracture Mechanics, 2017, 90: 100-109 doi: 10.1016/j.tafmec.2017.03.006
    [5] Maurer MJ, Thompson HA. Non-Fourier Effects at High Heat Flux. Journal of Heat Transfer, 1973, 95(2): 284-286 doi: 10.1115/1.3450051
    [6] Tzou DY. The generalized lagging response in small-scale and high-rate heating. International Journal of Heat and Mass Transfer, 1995, 38: 3231-3240 doi: 10.1016/0017-9310(95)00052-B
    [7] Qiu TQ, Tien CL. Short-pulse laser heating on metals. Journal of Heat Transfer, 1992, 35(3): 719-726
    [8] 王茂林、朱耿磊、赵丹丹, 等. 非傅里叶热冲击断裂力学研究综述. 机械研究与应用, 2020, 33(5): 208-212 (Wang ML, Zhu GL, Zhao DD, et al. Review of non-fourier thermal shock fracture mechanics. Mechanical Research& Application, 2020, 33(5): 208-212 (in Chinese) doi: 10.16576/j.cnki.1007-4414.2020.05.062

    Wang ML, Zhu GL, Zhao DD, et al. Review of non-fourier thermal shock fracture mechanics[J]. Mechanical Research& Application, 2020, 33(5): 208-212. (in Chinese)) doi: 10.16576/j.cnki.1007-4414.2020.05.062
    [9] Wang BL, Han JC. Non-Fourier heat conduction in layered composite materials with an interface crack. International Journal of Engineering Science, 2012, 55: 66-75 doi: 10.1016/j.ijengsci.2012.02.006
    [10] Liu XF, Chang DM, Wang BL, et al. Effect of temperature-dependency of material properties on thermal shock fracture of solids associated with non-Fourier heat conduction. Theoretical & Applied Fracture Mechanics, 2018, 93: 195-201
    [11] Guo SL, Wang BL. Thermal shock fracture of a cylinder with a penny-shaped crack based on hyperbolic heat conduction. International Journal of Heat & Mass Transfer, 2015, 91: 235-245
    [12] Chen ZT, Hu KQ. Thermo-Elastic Analysis of a Cracked Half-Plane Under a Thermal Shock Impact Using the Hyperbolic Heat Conduction Theory. Journal of Thermal Stresses, 2012, 35(4): 342-362 doi: 10.1080/01495739.2012.663685
    [13] Ahmadikia H, Rismanian M. Analytical solution of non-Fourier heat conduction problem on a fin under periodic boundary conditions. Journal of Mechanical Science and Technology, 2011, 25: 2919-2926 doi: 10.1007/s12206-011-0720-5
    [14] 许光映, 王晋宝, 薛大文. 短脉冲激光加热分数阶导热及其热应力研究. 力学学报, 2020, 52(2): 491-502 (Xu Guangyin, Wang Jinbao, Xue Dawen. Investigations on the thermal behavior and associated thermal stresses of the fractional heat conduction for short pulse laser heating. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 491-502 (in Chinese) doi: 10.6052/0459-1879-19-331

    Xu Guangyin, Wang Jinbao, Xue Dawen. Investigations on the thermal behavior and associated thermal stresses of the fractional heat conduction for short pulse laser heating. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 491-502. (in Chinese)). doi: 10.6052/0459-1879-19-331
    [15] Xue ZN, Tian XG, Liu JL. Thermal shock fracture of a crack in a functionally gradient half-space based on the memory-dependent heat conduction model. Applied Mathematical Modelling, 2020, 80: 840-858 doi: 10.1016/j.apm.2019.11.021
    [16] Chi XQ, Yu B, Jiang XY. Parameter estimation for the time fractional heat conduction model based on experimental heat flux data. Applied Mathematics Letters, 2020, 102: 106094 doi: 10.1016/j.aml.2019.106094
    [17] Ning TH, Jiang XY. Analytical solution for the time-fractional heat conduction equation in spherical coordinate system by the method of variable separation. Acta Mechanica Sinica, 2011, 27(6): 994-1000 doi: 10.1007/s10409-011-0533-x
    [18] Chen W. Time-space fabric underlying anomalous diffusion. Chaos, Solitons & Fractals, 2006, 28(4): 923-929
    [19] Yuriy, A. , Rossikhin, et al. Applications of Fractional Calculus to Dynamic Problems of Linear and Nonlinear Hereditary Mechanics of Solids. Applied Mechanics Reviews, 1997, 50(1): 15-67
    [20] Ibraheem QW, Hussein MS. Determination of time-dependent coefficient in time fractional heat equation. Partial Differential Equations in Applied Mathematics, 2023, 7: 100492 doi: 10.1016/j.padiff.2023.100492
    [21] Kimmich R. Strange kinetics, porous media, and NMR. Chemical Physics, 2002, 284(1-2): 253-285 doi: 10.1016/S0301-0104(02)00552-9
    [22] Povstenko Y. Fractional heat conduction equation and associated thermal stresses in an infinite solid with spherical cavity. Quarterly Journal of Mechanics and Applied Mathematics, 2008, 61(4): 523-547 doi: 10.1093/qjmam/hbn016
    [23] Povstenko, Yuriy. Time-fractional thermoelasticity problem for a sphere subjected to the heat flux. Applied Mathematics & Computation, 2015, 257: 327-334
    [24] Povstenko Y, Klekot J. The Cauchy problem for the time-fractional advection diffusion equation in a layer. Technical Sciences, 2016, 19(3): 231-244
    [25] Xue ZN, Liu JL, Tian XG, et al. Thermal shock fracture associated with a unified fractional heat conduction. European Journal of Mechanics - A/Solids, 2021, 85: 104129 doi: 10.1016/j.euromechsol.2020.104129
    [26] Viviani L, Di Paola M, Royer-Carfagni G. Fractional viscoelastic modeling of laminated glass beams in the pre-crack state under explosive loads. International Journal of Solids and Structures, 2022, 248: 111617 doi: 10.1016/j.ijsolstr.2022.111617
    [27] Yang WZ, Chen ZT. Investigation of transient thermal-mechanical behavior of a cracked viscoelastic material using time-fractional dual-phase-lag theory. Theoretical and Applied Fracture Mechanics, 2020, 106: 102500 doi: 10.1016/j.tafmec.2020.102500
    [28] Zhang XY, Li XF. Thermal shock fracture of a cracked thermoelastic plate based on time–fractional heat conduction. Engineering Fracture Mechanics, 2017, 171: 22-34 doi: 10.1016/j.engfracmech.2016.11.033
    [29] Kilbas AA, Srivastava HM, Trujillo JJ. Theory and applications of fractional differential equations. Elsevier, 2006.
    [30] Podlubny I. Fractional Differential Equations. Academic Press: San Diego, 1999.
    [31] Sneddon IN. The use of integral transforms. McGraw-Hill Companies, 1972.
    [32] Prudnikov A, Brychkov YA, Marichev O. Integrals and Series, Vol. 1: Elementary Functions, OPA. Gordon and Breach Science Publishers; Amsterdam. 1986
    [33] Vladimirov VS, Drozzinov YN, Zavialov O. Tauberian theorems for generalized functions. Springer Science & Business Media, 2012.
    [34] Mainardi F. Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos, Solitons & Fractals, 1996, 7(9): 1461-1477
    [35] Rizk AA. Stress intensity factor for an edge crack in two bonded dissimilar materials under convective cooling. Theoretical & Applied Fracture Mechanics, 2008, 49(3): 251-267
    [36] 吴学仁, 徐武. 裂纹体分析的权函数理论与应用: 回顾和展望. 力学进展, 2022, 52(3): 415-507 (Wu XR, Xu W. Weight function theory and applications for crack analysis: A review and outlook. Advances in Mechanics, 2022, 52(3): 415-507 (in Chinese) doi: 10.6052/1000-0992-21-060

    Wu XR, Xu W. Weight function theory and applications for crack analysis: A review and outlook. Advances in Mechanics, 2022, 52(3): 415-507(in Chinese)). doi: 10.6052/1000-0992-21-060
    [37] Bueckner HF. Novel principle for the computation of stress intensity factors. Zeitschrift für Angewandte Mathematik und Mechanik, 1970, 50(1): 529-546
    [38] Fett T, Diegele E, Munz D, et al. Weight functions for edge cracks in thin surface layers. International Journal of Fracture, 1996, 81(3): 205-215 doi: 10.1007/BF00039571
  • 加载中
图(4)
计量
  • 文章访问数:  92
  • HTML全文浏览量:  16
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-10
  • 录用日期:  2023-09-17
  • 网络出版日期:  2023-09-18

目录

    /

    返回文章
    返回