EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冲击荷载下颗粒材料临边界区域的波动行为及变形特征分析

王蕉 楚锡华

王蕉, 楚锡华. 冲击荷载下颗粒材料临边界区域的波动行为及变形特征分析. 力学学报, 2021, 0(0): 1-9 doi: 10.6052/0459-1879-21-242
引用本文: 王蕉, 楚锡华. 冲击荷载下颗粒材料临边界区域的波动行为及变形特征分析. 力学学报, 2021, 0(0): 1-9 doi: 10.6052/0459-1879-21-242
Wang Jiao, Chu Xihua. Analysis of wave behavior and deformation characteristics of granular materials in pro-border zone under impact load. Chinese Journal of Theoretical and Applied Mechanics, 2021, 0(0): 1-9 doi: 10.6052/0459-1879-21-242
Citation: Wang Jiao, Chu Xihua. Analysis of wave behavior and deformation characteristics of granular materials in pro-border zone under impact load. Chinese Journal of Theoretical and Applied Mechanics, 2021, 0(0): 1-9 doi: 10.6052/0459-1879-21-242

冲击荷载下颗粒材料临边界区域的波动行为及变形特征分析

doi: 10.6052/0459-1879-21-242
基金项目: 国家自然科学基金青年基金项目(11902228, 11772237), 中央高校基本科研业务费科技创新项目(2682021CX083)
详细信息
    作者简介:

    王蕉, 讲师, 主要研究方向: 计算固体力学. E-mail: wangjiao@swjtu.edu.cn

  • 中图分类号: O341

ANALYSIS OF WAVE BEHAVIOR AND DEFORMATION CHARACTERISTICS OF GRANULAR MATERIALS IN PRO-BORDER ZONE UNDER IMPACT LOAD

Funds: The project was supported by the National Natural Science Foundation of China Youth Fund Project (Grant NO. 11902228, 11772237) and the Fundamental Research Funds For Central Universities (Grant NO. 2682021CX083)
  • 摘要: 研究颗粒材料中的波传播问题在超材料制造方面有重要意义, 如波传导超材料边界的设计需考虑应力波的反射和吸收等问题. 本文从一维颗粒链中的波传播行为出发, 根据距边界不同位置处颗粒能够得到的最大动能的不同, 给出了临边界区域的定义. 然后分析了多组二维颗粒样本在冲击荷载作用下应力波的传播行为, 主要考虑了不同边界形状及不同颗粒排列方式对应力波在临边界区域内传播行为的影响. 研究表明, 临边界区颗粒排列方式主要影响边界附近颗粒的相对位置和局部孔隙率; 经边界反射后的应力波直接以边界形状在临边界区内传播, 该结论在边界情况越复杂(高局部孔隙率, 颗粒无序随机排列)时, 越准确; 在临边界区域外(即材料中心区域), 波前形状主要由波速决定. 弧形边界对波反射的汇聚作用和临边界区域内颗粒的排列方式所引起的弥散作用是两个竞争因素, 共同决定临边界区域内波的反射过程. 最后分析了临边界区域内颗粒力链网络在反射前后的变化. 该研究将为超材料设计提供借鉴.

     

  • 图  1  颗粒速度随加载时间的变化(线性)

    Figure  1.  Particle velocity variation with loading time (Linear contact model)

    图  2  颗粒速度随加载时间的变化(赫兹)

    Figure  2.  Particle velocity variation with loading time (Hertz contact model)

    图  3  计算模型

    Figure  3.  Simulation model

    图  4  波前形状随时间演化θ = 0

    Figure  4.  Wavefront shape evolves over time (θ = 0)

    图  5  波前形状分析示意图

    Figure  5.  Schematic diagram of wavefront shape analysis

    图  6  边界处应力波的反射

    Figure  6.  Reflection of stress wave at the boundary

    图  7  边界反射细部图

    Figure  7.  Details of boundary reflection

    图  8  波前形状随时间演化θ = 60°

    Figure  8.  Wavefront shape evolves over time (θ = 60°)

    图  9  边界细部图

    Figure  9.  Details of boundary

    图  10  边界反射图

    Figure  10.  Reflection at the boundary

    图  11  随机排列样本中波前演化图, 上: 单粒径, 下: 均匀分布多粒径

    Figure  11.  Wavefront evolution in randomly arranged specimens. Top: single-size particles. Bottom: uniform distribution of multi-size particles

    图  12  波前形状随时间演化. 上: θ = 30°, 下: θ = 60°

    Figure  12.  Wavefront shape evolves over time. Top: θ = 30°, bottom: θ = 60°

    图  13  B类边界θ = 30°波前形状分析示意图

    Figure  13.  Schematic diagram of wavefront shape analysis of type B boundary θ = 30°

    图  14  C类边界样本中应力波的反射

    Figure  14.  Reflection of stress wave at type C Boundary.

    图  15  单粒径随机排列样本波前形状图

    Figure  15.  Wavefront shape in randomly arranged samples of single-size particles

    图  16  均匀分布多粒径随机排列样本波前形状图

    Figure  16.  Wavefront shape in randomly arranged samples of uniformly distributed multi-size particles

    图  17  临边界区域力链随时间的演化

    Figure  17.  The evolution of force chain in the pro-border zone over time

    图  18  应力波进入临边界区时力链网络

    Figure  18.  Force chain network when stress wave enters the pro-border zone

    图  19  应力波反射后临边界区力链网络

    Figure  19.  Force chain network in the pro-border zone after stress wave reflection

    图  20  应力波反射前后临边界区颗粒动能分布

    Figure  20.  Distribution of particle kinetic energy in the pro-border zone before and after stress wave reflection

    表  1  计算参数

    Table  1.   Parameters used in the simulation

    $\rho $
    kg/m3
    ${v_0}$
    m/s
    kn
    N/m
    ks
    N/m
    G
    Pa
    ν
    26001.06.0 × 1076.0 × 1071.0 × 1090.3
    下载: 导出CSV

    表  2  二维样本尺寸参数

    Table  2.   Size parameters for 2-D specimen

    Size(mm)r (mm)rlo (mm)rhi (mm)
    75 × 1500.50.250.75
    下载: 导出CSV
  • [1] Tichler AM, Gomez LR, Upadhyaya N, et al. Transmission and reflection of strongly nonlinear solitary waves at granular interfaces. Physical Review Letters, 2013, 111(4): 048001 doi: 10.1103/PhysRevLett.111.048001
    [2] Sen S, Hong J, Bang J, et al. Solitary waves in the granular chain. Physics Reports, 2008, 462(2): 21-66 doi: 10.1016/j.physrep.2007.10.007
    [3] Potekin R, Jayaprakash KR, Mcfarland DM, et al. Experimental Study of Strongly Nonlinear Resonances and Anti-Resonances in Granular Dimer Chains. Experimental Mechanics, 2013, 53(5): 861-870 doi: 10.1007/s11340-012-9673-6
    [4] Cheng H, Luding S, Saitoh K, et al. Elastic wave propagation in dry granular media: Effects of probing characteristics and stress history. International Journal of Solids and Structures, 2020, 187: 85-99 doi: 10.1016/j.ijsolstr.2019.03.030
    [5] Wang J, Chu X. Impact energy distribution and wavefront shape in granular material assemblies. Granular Matter, 2019, 21(2): 23 doi: 10.1007/s10035-019-0880-z
    [6] Wang J, Chu X, Jiang Q, et al. Energy transfer and influence of excitation frequency in granular materials from the perspective of Fourier transform. Powder Technology, 2019, 356: 493-499 doi: 10.1016/j.powtec.2019.08.061
    [7] Sadovskaya OV, Sadovskii VM. Elastoplastic Waves in Granular Materials. Journal of Applied Mechanics & Technical Physics, 2003, 44(5): 741-747
    [8] Pal RK, Awasthi AP, Geubelle P H. Characterization of wave propagation in elastic and elastoplastic granular chains. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2014, 89(1): 012204
    [9] On T, Wang E, Lambros J. Plastic waves in one-dimensional heterogeneous granular chains under impact loading single intruders and dimer chains. International Journal of Solids & Structures, 2015, 62: 81-90
    [10] Hayden A, Burgoyne A, et al. Guided Impact Mitigation in 2D and 3D Granular Crystals. Procedia Engineering, 2015, 103: 52-59 doi: 10.1016/j.proeng.2015.04.008
    [11] Chong C, Porter MA, Kevrekidis PG, et al. Nonlinear coherent structures in granular crystals. Journal of Physics Condensed Matter An Institute of Physics Journal, 2017, 29(41): 413003 doi: 10.1088/1361-648X/aa7672
    [12] Wang J, Chu X, Xiu C, et al. Stress wave in monosized bead string with various water contents. Advanced Powder Technology, 2020, 31(3): 993-1000 doi: 10.1016/j.apt.2019.12.027
    [13] 孙锦山, 朱建士, 贾祥瑞. 颗粒材料中致密波结构研究. 力学学报, 1999, 31(4): 423-433 (Sun JS, Zhu JS, Jia XR. An analysis of compaction wave in granular material. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(4): 423-433 (in Chinese) doi: 10.3321/j.issn:0459-1879.1999.04.006
    [14] 章青, 顾鑫郁, 杨天. 冲击载荷作用下颗粒材料动态力学响应的近场动力学模拟. 力学学报, 2016, 48(1): 56-63 (Zhang Q, Gu X, Yu YT. Peridynamics simulation for dynamic response of granular materials under impact loading. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 56-63 (in Chinese) doi: 10.6052/0459-1879-15-291
    [15] 修晨曦, 楚锡华. 基于微形态模型的颗粒材料中波的频散现象研究. 力学学报, 2018, 50(2): 315-328 (Xiu CX, Chu XH. Study on dispersion behavior and band gap in granular materials based on a micromorphic model. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 315-328 (in Chinese) doi: 10.6052/0459-1879-17-420
    [16] Mouraille O, Mulder WA, Luding S. Sound wave acceleration in granular materials. Journal of Statistic Mechanics, 2006, 47(07): 1192-1197
    [17] Awasthi AP, Smith KJ, Geubelle PH, et al. Propagation of solitary waves in 2D granular media: A numerical study. Mechanics of Materials, 2012, 54: 100-112 doi: 10.1016/j.mechmat.2012.07.005
    [18] Chotiros NP, Isakson MJ. Shear and compressional wave speeds in Hertzian granular media. Journal of the Acoustical Society of America, 2011, 129(6): 3531 doi: 10.1121/1.3571421
    [19] Huang B, Xia T, Qiu H, et al. Shear wave velocity in sand considering the effects of frequency based on particle contact theory. Wave Motion, 2017, 72: 173-186 doi: 10.1016/j.wavemoti.2017.02.006
    [20] Yang J, Sutton M. Nonlinear wave propagation in a hexagonally packed granular channel under rotational dynamics. International Journal of Solids & Structures, 2015: 65-73
    [21] Lisyansky A, Meimukhin D, Starosvetsky Y. Primary wave transmission in the hexagonally packed, damped granular crystal with a spatially varying cross section. Communications in Nonlinear Science & Numerical Simulation, 2015, 27(1-3): 193-205
    [22] Keki A, Gorder R. Wave propagation across interfaces induced by different interaction exponents in ordered and disordered Hertz-like granular chains. Physica D: Nonlinear Phenomena, 2018, 384: 18-33
    [23] Hua T, Van Gorder RA. Wave propagation and pattern formation in two-dimensional hexagonally-packed granular crystals under various configurations. Granular matter, 2019, 21(1): 3 doi: 10.1007/s10035-018-0852-8
    [24] Li LL, Yang XQ, Wei Z. Two interactional solitary waves propagating in two-dimensional hexagonal packing granular system. Granular Matter, 2018, 20(3): 49 doi: 10.1007/s10035-018-0810-5
    [25] Leonard A, Fraternali F, Daraio C. Directional Wave Propagation in a Highly Nonlinear Square Packing of Spheres. Experimental Mechanics, 2013, 53(3): 327-337 doi: 10.1007/s11340-011-9544-6
    [26] Leonard A, Daraio C, Awasthi A. Effects of weak disorder on stress-wave anisotropy in centered square nonlinear granular crystals. Physical Review E: Statistical, 2012, 86(3-1): 1-10
    [27] Leonard A, Daraio C. Stress Wave Anisotropy in Centered Square Highly Nonlinear Granular Systems. Physical Review Letters, 2012, 108(21): 214301-214301 doi: 10.1103/PhysRevLett.108.214301
    [28] Leonard A, Ponson L, Daraio C. Wave mitigation in ordered networks of granular chains. Journal of the Mechanics & Physics of Solids, 2014, 73(4336): 103-117
    [29] Xu J, Zheng B. Stress Wave Propagation in Two-dimensional Buckyball Lattice. Scientific Reports, 2016, 6: 37692 doi: 10.1038/srep37692
    [30] Galich, Pavel I, Rudykh, et al. Elastic wave propagation in finitely deformed layered materials. Journal of the Mechanics and Physics of Solids, 2017, 98: 390-410 doi: 10.1016/j.jmps.2016.10.002
    [31] Zhou XZ, Wang YS, Zhang C. Effects of material parameters on elastic band gaps of two-dimensional solid phononic crystals. Journal of Applied Physics, 2009, 106(1): 2022
    [32] Wang J, Chu X, Zhang J, et al. The Effects of Microstructure on Wave Velocity and Wavefront in Granular Assemblies with Binary-sized Particles. International Journal of Solids and Structures, 2018, 159(2): 156-162
    [33] Wang J, Chu X. Compressive Wave Propagation in Highly Ordered Granular Media Based on DEM. International Journal of Nonlinear Sciences and Numerical Simulation, 2018, 19(5): 545-552 doi: 10.1515/ijnsns-2017-0213
  • 加载中
图(20) / 表(2)
计量
  • 文章访问数:  8
  • HTML全文浏览量:  6
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-07-19

目录

    /

    返回文章
    返回

    重要通知

    近日,本刊多次接到来电,称有不法网站冒充《力学学报》杂志官网,并向投稿人收取高额审稿费用。在此,我们郑重申明:

    1.《力学学报》官方网站(https://lxxb.cstam.org.cn/)是本刊唯一的投稿渠道,《力学学报》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

    2.《力学学报》在稿件录用前不以任何形式向作者收取包括审稿费、中介费等在内的任何费用!请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62536271。

    感谢大家多年来对《力学学报》的支持与厚爱,欢迎继续关注我们!