EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高超声速火星进入环境中颗粒运动特性研究

邢好运 刘卓 汪球 赵伟 高亮杰 刘中臣 钱战森

邢好运, 刘卓, 汪球, 赵伟, 高亮杰, 刘中臣, 钱战森. 高超声速火星进入环境中颗粒运动特性研究. 力学学报, 待出版 doi: 10.6052/0459-1879-23-192
引用本文: 邢好运, 刘卓, 汪球, 赵伟, 高亮杰, 刘中臣, 钱战森. 高超声速火星进入环境中颗粒运动特性研究. 力学学报, 待出版 doi: 10.6052/0459-1879-23-192
Xing Haoyun, Liu Zhuo, Wang Qiu, Zhao Wei, Gao Liangjie, Liu Zhongchen, Qian Zhansen. Research on particle motion characteristics under hypersonic mars entry environment. Chinese Journal of Theoretical and Applied Mechanics, in press doi: 10.6052/0459-1879-23-192
Citation: Xing Haoyun, Liu Zhuo, Wang Qiu, Zhao Wei, Gao Liangjie, Liu Zhongchen, Qian Zhansen. Research on particle motion characteristics under hypersonic mars entry environment. Chinese Journal of Theoretical and Applied Mechanics, in press doi: 10.6052/0459-1879-23-192

高超声速火星进入环境中颗粒运动特性研究

doi: 10.6052/0459-1879-23-192
基金项目: 广东省重点领域研发计划(2021B0909060004)、国家自然科学基金(12072353,12232018)和中国科学院青年创新促进会(2021020)项目资助
详细信息
    通讯作者:

    汪球, 高级工程师, 主要研究方向: 高焓气动物理与应用. E-mail: wangqiu@imech.ac.cn

RESEARCH ON PARTICLE MOTION CHARACTERISTICS UNDER HYPERSONIC MARS ENTRY ENVIRONMENT

  • 摘要: 火星大气中会发生不同规模的沙尘暴, 大气中蕴含的尘埃颗粒会对高速进入的火星探测器表面造成侵蚀并导致壁面热流增加, 给探测器的热防护系统设计带来巨大挑战. 本文针对高超声速火星进入环境两相流动问题, 基于Euler-Lagrange框架建立了非平衡流场与颗粒的单向耦合计算方法, 采用模态半径为0.35 μm的火星大气颗粒分布模型, 研究了不同尺寸颗粒在流场中的运动轨迹, 获得了高温相变模型对颗粒运动的影响以及不同粒径颗粒的撞击能量分布. 结果表明, 颗粒在高温流场中运动会吸热融化甚至蒸发, 高温相变模型导致的颗粒直径减小对小尺寸颗粒运动轨迹有较大影响; 当前计算状态下, 直径3 μm以上的颗粒具有较大的Stokes数且颗粒半径在运动过程中基本保持不变, 其运动轨迹受流场影响较小, 该尺寸颗粒的撞击分数均达95%以上, 是造成壁面撞击的主要颗粒尺寸; 撞击能量分数结果表明, 直径3-10 μm之间的颗粒是撞击能量的主要来源, 约占总撞击能量的80%.

     

  • 图  1  颗粒定位示意图

    Figure  1.  Particle locating algorithm description

    图  2  IDW插值模型示意图

    Figure  2.  Schematic of IDW interpolation model

    图  3  Schiaparelli飞行器与计算域

    Figure  3.  Configuration of Schiaparelli and the calculation region

    图  4  壁面热流计算结果对比

    Figure  4.  Comparison of surface heat flow calculation

    图  5  颗粒运动轨迹结果对比

    Figure  5.  Comparison of particle trajectory

    图  6  网格无关性研究

    Figure  6.  Grid independence studies

    图  7  颗粒CFL数无关性检验

    Figure  7.  Particle CFL number independence test

    图  8  相变模型对颗粒轨迹影响

    Figure  8.  Effect of phase transition model on particle trajectories

    图  9  不同直径颗粒轨迹示意图

    Figure  9.  Trajectories of particles with different diameters

    图  10  不同粒径轨迹示意图

    Figure  10.  Trajectory of different particle sizes

    图  11  相变模型对撞击分数影响

    Figure  11.  Effect of phase transition model on impact fraction

    图  12  颗粒分布模型[9](rm = 0.35 μm)

    Figure  12.  Particle distribution model for rm = 0.35 μm

    图  13  撞击能量分数分布

    Figure  13.  Impact energy fraction distribution

    表  1  程序验证的来流条件

    Table  1.   Freestream conditions for program test

    ConditionsMSL1-1467T52902HUPULSE749
    MSL D, m0.05080.17780.0508
    u, m/s308031604769
    T, K109517931045
    Tv, K109517931045
    ρ, g/m315.192.75.75
    h0, MJ/kg5.68.612.3
    Ma6.24.39.89
    YCO21.0000.7191.0
    YCO0.0000.1790
    YO20.0000.1000
    YO0.0000.0020
    下载: 导出CSV

    表  2  本文程序和LAURA的无量纲激波脱体距离计算结果对比

    Table  2.   Comparison of Shock standoff distances of sphere-cone model calculated by different codes

    Dimensionless Shock standoff distanceConditions MSL1-1467Conditions T52902
    Present program
    LAURA
    δ(∆/R)0.0580.076
    0.0590.077
    下载: 导出CSV
  • [1] 杨肖峰. 火星探测器气动力热和传热特性研究. [硕士论文]. 绵阳: 中国空气动力研究与发展中心, 2013

    Yang Xiaofeng. Aerodynamics, aerothermodynamics and heat-transfer investigation for Mars entry vehicles. [MSc Thesis]. Mianyang: China Aerodynamics Research and Development Center Graduate School, 2013 (in Chinese)
    [2] Li Chunlai, Zhang Rongqiao, Yu Dengyun, et al. China’s Mars exploration mission and science investigation. Space Science Reviews, 2021, 217(4): 57 doi: 10.1007/s11214-021-00832-9
    [3] 王誉棋, 魏勇, 范开等. 沙尘暴对火星表面探测器的影响: 回顾与展望. 科学通报, 2023, 68(4): 368-379 (Wang Yuqi, Wei Yong, Fan Kai, et al. The impact of dust storms on Mars surface rovers: review and prospect. Chinese Science Bulletin, 2023, 68(4): 368-379 (in Chinese) doi: 10.1360/TB-2022-0445
    [4] Fernández W. Martian dust storms: A review. Earth, Moon, and Planets, 1997, 77(1): 19-46 doi: 10.1023/A:1006134805153
    [5] Vasilevskii E, Osiptsov A, Chirikhin A, et al. Heat exchange on the front surface of a blunt body in a high‐speed flow containing low‐inertia particles. Journal of Engineering Physics and Thermophysics, 2001, 74(6): 1399-1411 doi: 10.1023/A:1013996332270
    [6] Papadopoulos P, Tauber M E, Chang I D. Heatshield erosion in a dusty Martian atmosphere. Journal of Spacecraft and Rockets, 1993, 30(2): 140-151 doi: 10.2514/3.11522
    [7] Palmer G, Chen Y K, Papadopoulos P, et al. Reassessment of effect of dust erosion on heatshield of mars entry vehicle. Journal of Spacecraft and Rockets, 2000, 37(6): 747-752 doi: 10.2514/2.3646
    [8] Majid A, Bauder U, Herdrich G, et al. Two-phase flow solver for hypersonic entry flows in a dusty Martian atmosphere. Journal of Thermophysics and Heat Transfer, 2016, 30(2): 418-428 doi: 10.2514/1.T4542
    [9] Palmer G, Ching E, Ihme M, et al. Modeling heat-shield erosion due to dust particle impacts for Martian entries. Journal of Spacecraft and Rockets, 2020, 57(5): 857-875 doi: 10.2514/1.A34744
    [10] Ching E, Barnhardt M, Ihme M. Sensitivity of hypersonic dusty flows to physical modeling of the particle phase. Journal of Spacecraft and Rockets, 2021, 58(3): 653-667 doi: 10.2514/1.A34810
    [11] Ching E J, Ihme M. Sensitivity study of high-speed dusty flows over blunt bodies simulated using a discontinuous Galerkin method. AIAA Paper 2019-0895, 2019
    [12] Ching E J, Ihme M. Discontinuous Galerkin simulations of dusty flows over a full-scale capsule during Mars atmospheric entry. AIAA Paper 2021-1518, 2021
    [13] Wörner M. A compact introduction to the numerical modeling of multiphase flows. Karlsruhe: wissenschaftliche berichte fzka, 2003.
    [14] Majid A, Bauder U, Stindl T, et al. Development of a two phase solver accounting for solid particles in continuum gas flows. AIAA Paper 2008-4105, 2008
    [15] Kroells M D, Sahai A, Schwartzentruber T E. Sensitivity study of dust-induced surface erosion during Martian planetary entry. AIAA Paper 2022-0112, 2022
    [16] Habeck J B, Kroells M D, Schwartzentruber T E, et al. Characterization of particle-surface impacts on a sphere-cone at hypersonic flight conditions. AIAA Paper 2023-0205, 2023
    [17] Henderson C B. Drag coefficients of spheres in continuum and rarefied flows. AIAA Journal, 1976, 14(6): 707-708 doi: 10.2514/3.61409
    [18] Bailey A B, Hiatt J. Free-flight measurements of sphere drag at subsonic, transonic, supersonic, and hypersonic speeds for continuum, transition, and near-free-molecular flow conditions. Arnold Engineering Development Center Arnold AFS TN, 1971
    [19] Fox T, Rackett C, Nicholls J. Shock wave ignition of magnesium powders// Shock Tube and Shock Wave Research, Eleventh International Symposium, Seattle: 1978
    [20] Schaefer L, Fegley Jr B. A thermodynamic model of high temperature lava vaporization on Io. Icarus, 2004, 169(1): 216-241 doi: 10.1016/j.icarus.2003.08.023
    [21] Centolanzi F J, Chapman D R. Vapor pressure of tektite glass and its bearing on tektite trajectories determined from aerodynamic analysis. Journal of Geophysical Research, 1966, 71(6): 1735-1749 doi: 10.1029/JZ071i006p01735
    [22] Bartier P M, Keller C P. Multivariate interpolation to incorporate thematic surface data using inverse distance weighting (IDW). Computers & Geosciences, 1996, 22(7): 795-799
    [23] Pinaud G, Bertrand J, Soler J, et al. Exomars mission 2016: A preliminary post-flight performance analysis of the heat shield during entry on Mars atmopshere. AIAA Paper 2019-0244, 2019
    [24] Gülhan A, Thiele T, Siebe F, et al. Aerothermal measurements from the ExoMars Schiaparelli capsule entry. Journal of Spacecraft and Rockets, 2019, 56(1): 68-81 doi: 10.2514/1.A34228
    [25] Kim K H, Kim C, Rho O H. Methods for the accurate computations of hypersonic flows - I. AUSMPW + scheme. Journal of Computational Physics, 2001, 174(1): 38-80 doi: 10.1006/jcph.2001.6873
    [26] Jameson A, Yoon S. LU implicit schemes with multiple grids for the Euler equations. AIAA Paper 1986-105, 1986
    [27] Camac M. CO2 Relaxation processes in shock waves. Fundamental Phenomena in Hypersonic Flow, 1964: 195–215
    [28] Millikan R C, White D R. Systematics of vibrational relaxation. The Journal of Chemical Physics, 1963, 39(12): 3209-3213 doi: 10.1063/1.1734182
    [29] Leibowitz M G, Austin J M. Hypervelocity spherically-blunted cone flows in Mars entry ground testing. AIAA Journal, 2021, 59(9): 3317-3330 doi: 10.2514/1.J060162
    [30] Moreira F C, Wolf W R, Azevedo J L F. Thermal analysis of hypersonic flows of carbon dioxide and air in thermodynamic non-equilibrium. International Journal of Heat and Mass Transfer, 2021, 165: 120670 doi: 10.1016/j.ijheatmasstransfer.2020.120670
    [31] Hollis, B R, Perkins, J N, High-enthalpy aerothermodynamics of a Mars entry vehicle part 1: Experimental results. Journal of Spacecraft and Rockets, 1997, 34(4): 449-456
    [32] 李中华, 李志辉, 蒋新宇等. NPLS流场测量技术在高超声速风洞中纳米粒子跟随性数值仿真. 实验流体力学, 2017, 31(1): 73-79 (Li Zhonghua, Li Zhihui, Jiang Xinyu, et al. Numerical simulation of nano-particle following features for NPLS measurement technology used in hypersonic wind tunnel. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 73-79 (in Chinese) doi: 10.11729/syltlx20160094
    [33] Urban W D, Mungal M. Planar velocity measurements in compressible mixing layers. Journal of Fluid Mechanics, 2001, 431: 189-222 doi: 10.1017/S0022112000003177
    [34] Connolly B, Loth E. Simulations of ash and sand impact on a hypersonic forebody. AIAA Journal, 2021, 59(6): 1914-1923 doi: 10.2514/1.J059552
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  32
  • HTML全文浏览量:  8
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 网络出版日期:  2023-05-25

目录

    /

    返回文章
    返回