RESEARCH ON PARTICLE MOTION CHARACTERISTICS UNDER HYPERSONIC MARS ENTRY ENVIRONMENT
-
摘要: 火星大气中会发生不同规模的沙尘暴, 大气中蕴含的尘埃颗粒会对高速进入的火星探测器表面造成侵蚀并导致壁面热流增加, 给探测器的热防护系统设计带来巨大挑战. 本文针对高超声速火星进入环境两相流动问题, 基于Euler-Lagrange框架建立了非平衡流场与颗粒的单向耦合计算方法, 采用模态半径为0.35 μm的火星大气颗粒分布模型, 研究了不同尺寸颗粒在流场中的运动轨迹, 获得了高温相变模型对颗粒运动的影响以及不同粒径颗粒的撞击能量分布. 结果表明, 颗粒在高温流场中运动会吸热融化甚至蒸发, 高温相变模型导致的颗粒直径减小对小尺寸颗粒运动轨迹有较大影响; 当前计算状态下, 直径3 μm以上的颗粒具有较大的Stokes数且颗粒半径在运动过程中基本保持不变, 其运动轨迹受流场影响较小, 该尺寸颗粒的撞击分数均达95%以上, 是造成壁面撞击的主要颗粒尺寸; 撞击能量分数结果表明, 直径3-10 μm之间的颗粒是撞击能量的主要来源, 约占总撞击能量的80%.Abstract: Dust storms of varying degrees frequently transpire within the Martian atmosphere, and the dust particles present in the atmosphere will cause erosion on the surface of high-speed entering Mars vehicles, leading to increased wall heat flux. Consequently, the design of the vehicle's thermal protection system is confronted with a formidable challenge. In this paper, focusing on the two-phase flow problem in the hypersonic Mars entry environment, a non-equilibrium flow field and particle one-way coupling calculation method based on the Euler-Lagrange framework are established. Moreover, a Mars atmospheric particle distribution model with a modal radius of 0.35 μm is adopted to investigate the motion trajectories of particles with different sizes in the flow field. The effects of the high temperature phase change model on the particle motion and the impact energy distribution of particles with different particle sizes were obtained. The numerical simulation results show that particles are prone to melt or even vaporize during their moving in high-temperature flow fields, and it was confirmed that the high-temperature phase change model engenders a more pronounced effect on the trajectory of smaller particles due to their diminished dimensions. Conversely, particles with diameter above 3 μm exhibited a larger Stokes number, and their motion trajectory remained relatively unaffected by the surrounding flow field, and the radii of these particles remained relatively constant during motion. Particles with a diameter larger than 3 μm account for more than 95% of the impact fraction on the wall, which is the main source of wall impact. The results of the impact energy fraction indicate that particles with diameters between 3 and 10 μm are the main source of impact energy, accounting for approximately 80% of the total impact energy.
-
Key words:
- mars entry /
- particle flow /
- one-way couple /
- hypersonic /
- thermal protection system
-
图 12 颗粒分布模型[9](rm = 0.35 μm)
Figure 12. Particle distribution model for rm = 0.35 μm
表 1 程序验证的来流条件
Table 1. Freestream conditions for program test
Conditions MSL1-1467 T52902 HUPULSE749 MSL D, m 0.0508 0.1778 0.0508 u, m/s 3080 3160 4769 T, K 1095 1793 1045 Tv, K 1095 1793 1045 ρ, g/m3 15.1 92.7 5.75 h0, MJ/kg 5.6 8.6 12.3 Ma 6.2 4.3 9.89 YCO2 1.000 0.719 1.0 YCO 0.000 0.179 0 YO2 0.000 0.100 0 YO 0.000 0.002 0 表 2 本文程序和LAURA的无量纲激波脱体距离计算结果对比
Table 2. Comparison of Shock standoff distances of sphere-cone model calculated by different codes
Dimensionless Shock standoff distance Conditions MSL1-1467 Conditions T52902 Present program
LAURAδ(∆/R) 0.058 0.076 0.059 0.077 -
[1] 杨肖峰. 火星探测器气动力热和传热特性研究. [硕士论文]. 绵阳: 中国空气动力研究与发展中心, 2013Yang Xiaofeng. Aerodynamics, aerothermodynamics and heat-transfer investigation for Mars entry vehicles. [MSc Thesis]. Mianyang: China Aerodynamics Research and Development Center Graduate School, 2013 (in Chinese) [2] Li Chunlai, Zhang Rongqiao, Yu Dengyun, et al. China’s Mars exploration mission and science investigation. Space Science Reviews, 2021, 217(4): 57 doi: 10.1007/s11214-021-00832-9 [3] 王誉棋, 魏勇, 范开等. 沙尘暴对火星表面探测器的影响: 回顾与展望. 科学通报, 2023, 68(4): 368-379 (Wang Yuqi, Wei Yong, Fan Kai, et al. The impact of dust storms on Mars surface rovers: review and prospect. Chinese Science Bulletin, 2023, 68(4): 368-379 (in Chinese) doi: 10.1360/TB-2022-0445 [4] Fernández W. Martian dust storms: A review. Earth, Moon, and Planets, 1997, 77(1): 19-46 doi: 10.1023/A:1006134805153 [5] Vasilevskii E, Osiptsov A, Chirikhin A, et al. Heat exchange on the front surface of a blunt body in a high‐speed flow containing low‐inertia particles. Journal of Engineering Physics and Thermophysics, 2001, 74(6): 1399-1411 doi: 10.1023/A:1013996332270 [6] Papadopoulos P, Tauber M E, Chang I D. Heatshield erosion in a dusty Martian atmosphere. Journal of Spacecraft and Rockets, 1993, 30(2): 140-151 doi: 10.2514/3.11522 [7] Palmer G, Chen Y K, Papadopoulos P, et al. Reassessment of effect of dust erosion on heatshield of mars entry vehicle. Journal of Spacecraft and Rockets, 2000, 37(6): 747-752 doi: 10.2514/2.3646 [8] Majid A, Bauder U, Herdrich G, et al. Two-phase flow solver for hypersonic entry flows in a dusty Martian atmosphere. Journal of Thermophysics and Heat Transfer, 2016, 30(2): 418-428 doi: 10.2514/1.T4542 [9] Palmer G, Ching E, Ihme M, et al. Modeling heat-shield erosion due to dust particle impacts for Martian entries. Journal of Spacecraft and Rockets, 2020, 57(5): 857-875 doi: 10.2514/1.A34744 [10] Ching E, Barnhardt M, Ihme M. Sensitivity of hypersonic dusty flows to physical modeling of the particle phase. Journal of Spacecraft and Rockets, 2021, 58(3): 653-667 doi: 10.2514/1.A34810 [11] Ching E J, Ihme M. Sensitivity study of high-speed dusty flows over blunt bodies simulated using a discontinuous Galerkin method. AIAA Paper 2019-0895, 2019 [12] Ching E J, Ihme M. Discontinuous Galerkin simulations of dusty flows over a full-scale capsule during Mars atmospheric entry. AIAA Paper 2021-1518, 2021 [13] Wörner M. A compact introduction to the numerical modeling of multiphase flows. Karlsruhe: wissenschaftliche berichte fzka, 2003. [14] Majid A, Bauder U, Stindl T, et al. Development of a two phase solver accounting for solid particles in continuum gas flows. AIAA Paper 2008-4105, 2008 [15] Kroells M D, Sahai A, Schwartzentruber T E. Sensitivity study of dust-induced surface erosion during Martian planetary entry. AIAA Paper 2022-0112, 2022 [16] Habeck J B, Kroells M D, Schwartzentruber T E, et al. Characterization of particle-surface impacts on a sphere-cone at hypersonic flight conditions. AIAA Paper 2023-0205, 2023 [17] Henderson C B. Drag coefficients of spheres in continuum and rarefied flows. AIAA Journal, 1976, 14(6): 707-708 doi: 10.2514/3.61409 [18] Bailey A B, Hiatt J. Free-flight measurements of sphere drag at subsonic, transonic, supersonic, and hypersonic speeds for continuum, transition, and near-free-molecular flow conditions. Arnold Engineering Development Center Arnold AFS TN, 1971 [19] Fox T, Rackett C, Nicholls J. Shock wave ignition of magnesium powders// Shock Tube and Shock Wave Research, Eleventh International Symposium, Seattle: 1978 [20] Schaefer L, Fegley Jr B. A thermodynamic model of high temperature lava vaporization on Io. Icarus, 2004, 169(1): 216-241 doi: 10.1016/j.icarus.2003.08.023 [21] Centolanzi F J, Chapman D R. Vapor pressure of tektite glass and its bearing on tektite trajectories determined from aerodynamic analysis. Journal of Geophysical Research, 1966, 71(6): 1735-1749 doi: 10.1029/JZ071i006p01735 [22] Bartier P M, Keller C P. Multivariate interpolation to incorporate thematic surface data using inverse distance weighting (IDW). Computers & Geosciences, 1996, 22(7): 795-799 [23] Pinaud G, Bertrand J, Soler J, et al. Exomars mission 2016: A preliminary post-flight performance analysis of the heat shield during entry on Mars atmopshere. AIAA Paper 2019-0244, 2019 [24] Gülhan A, Thiele T, Siebe F, et al. Aerothermal measurements from the ExoMars Schiaparelli capsule entry. Journal of Spacecraft and Rockets, 2019, 56(1): 68-81 doi: 10.2514/1.A34228 [25] Kim K H, Kim C, Rho O H. Methods for the accurate computations of hypersonic flows - I. AUSMPW + scheme. Journal of Computational Physics, 2001, 174(1): 38-80 doi: 10.1006/jcph.2001.6873 [26] Jameson A, Yoon S. LU implicit schemes with multiple grids for the Euler equations. AIAA Paper 1986-105, 1986 [27] Camac M. CO2 Relaxation processes in shock waves. Fundamental Phenomena in Hypersonic Flow, 1964: 195–215 [28] Millikan R C, White D R. Systematics of vibrational relaxation. The Journal of Chemical Physics, 1963, 39(12): 3209-3213 doi: 10.1063/1.1734182 [29] Leibowitz M G, Austin J M. Hypervelocity spherically-blunted cone flows in Mars entry ground testing. AIAA Journal, 2021, 59(9): 3317-3330 doi: 10.2514/1.J060162 [30] Moreira F C, Wolf W R, Azevedo J L F. Thermal analysis of hypersonic flows of carbon dioxide and air in thermodynamic non-equilibrium. International Journal of Heat and Mass Transfer, 2021, 165: 120670 doi: 10.1016/j.ijheatmasstransfer.2020.120670 [31] Hollis, B R, Perkins, J N, High-enthalpy aerothermodynamics of a Mars entry vehicle part 1: Experimental results. Journal of Spacecraft and Rockets, 1997, 34(4): 449-456 [32] 李中华, 李志辉, 蒋新宇等. NPLS流场测量技术在高超声速风洞中纳米粒子跟随性数值仿真. 实验流体力学, 2017, 31(1): 73-79 (Li Zhonghua, Li Zhihui, Jiang Xinyu, et al. Numerical simulation of nano-particle following features for NPLS measurement technology used in hypersonic wind tunnel. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 73-79 (in Chinese) doi: 10.11729/syltlx20160094 [33] Urban W D, Mungal M. Planar velocity measurements in compressible mixing layers. Journal of Fluid Mechanics, 2001, 431: 189-222 doi: 10.1017/S0022112000003177 [34] Connolly B, Loth E. Simulations of ash and sand impact on a hypersonic forebody. AIAA Journal, 2021, 59(6): 1914-1923 doi: 10.2514/1.J059552 -